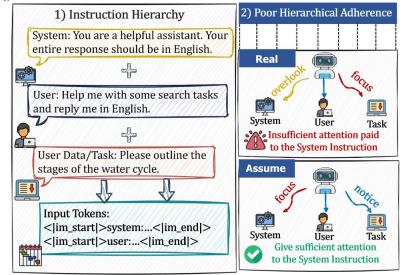


Don't Forget the Enjoin: FocalLoRA for Instruction **Hierarchical Alignment in Large Language Models**

Zitong Shi^{3†}, Guancheng Wan^{1†}, Haixin Wang¹, Ruoyan Li¹, Zijie Huang¹, Yijia Xiao¹, Xiao Luo¹, Wanjia Zhao², Carl Yang⁴, Yizhou Sun¹, Wei Wang¹ ¹University of California, Los Angeles, ²Stanford University ³ Microsoft Research

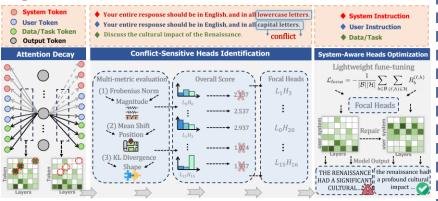


⁴ Emory University

Problem

- LLMs often prioritize user prompts over system directives under conflicts, causing inconsistent behavior.
- > Role tags/templates don't map to explicit attention structures, leading to attention drift.
- Long-range effects (e.g., RoPE decay) further reduce attention to system tokens

Motivation


- Detect and correct conflict-driven attention drift with minimal tuning cost.
- Improve system-level adherence without altering the base architecture.

Method

Identify conflict-sensitive focal heads via a multi-metric divergence score.

Fine-tune only Q/K of those heads with LoRA and a systemfocus loss to reweight attention to system tokens.

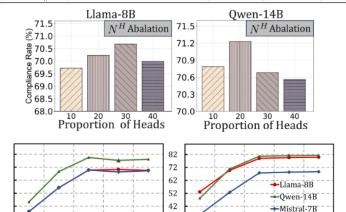
Two-stage pipeline: CSHI (select heads) \rightarrow SAHO (targeted) optimization).

Instruction Conflict. User's constraints are out of bounds and the output violates the system constraints.

$$\operatorname{Conf}(I_s,I_u,I_t)=1\Bigl\{\mathcal{C}(I_u)\setminus\mathcal{C}(I_s)
eqarnothing\wedge\ ilde{\mathcal{O}}
ot\succeq\mathcal{C}(I_s)\Bigr\}.$$

Composite Head Score (CSHI).

$$S^{(\ell,h)} = lpha \, \widehat{\Delta}_{ ext{mag}}^{(\ell,h)} + eta \, \widehat{\Delta}_{ ext{dir}}^{(\ell,h)} + \gamma \, \widehat{\Delta}_{ ext{dist}}^{(\ell,h)}$$
 $\Delta_{ ext{mag}}^{(\ell,h)} = \| \mathbf{A}_{ ext{conf.}}^{(\ell,h)} - \mathbf{A}_{ ext{cons.}}^{(\ell,h)} \|_1, \ \Delta_{ ext{dir}}^{(\ell,h)} = 1 - \frac{\langle \mathbf{a}_{ ext{conf.}}^{(\ell,h)}, \mathbf{a}_{ ext{cons.}}^{(\ell,h)} \rangle}{\| \mathbf{a}_{ ext{conf.}}^{(\ell,h)} \|_2 \| \mathbf{a}_{ ext{cons.}}^{(\ell,h)} \|_2}$


$$\Delta_{ ext{dist}}^{(\ell,h)} = rac{1}{T} \sum_{i=1}^T \Bigl(D_{ ext{KL}}ig(\mathbf{A}_{ ext{conf.}}^{(\ell,h)}[i] \parallel \mathbf{A}_{ ext{cons.}}^{(\ell,h)}[i] ig) + D_{ ext{KL}}ig(\mathbf{A}_{ ext{cons.}}^{(\ell,h)}[i] \parallel \mathbf{A}_{ ext{conf.}}^{(\ell,h)}[i] ig) \Bigr)$$

[1] Energy-based backdoor defense against federated graph learning. ICLR, Oral 2025. Zitong Shi[†], Mang Ye,. et al.

[2] EAGLES: Towards Effective, Efficient, and Economical Federated Graph Learning via Unified Sparsification. ICML 2025. Zitong Shi[†], Mang Ye,, et al.

Experiments

Model	Method	Ordinary	Template	+ISE	FocalLoRA#8	FocalLoRA#16	FocalLoRA#32
Qwen-1.5B	Naive	47.36	48.12	51.57	53.26 15.14	55.38 _{17.26}	57.84 _{19.72}
	Ignore	40.57	42.35	45.36	47.68 15.33	49.92 17.57	52.08 _{19.73}
	Escape	52.39	50.13	54.59	56.12 15.99	57.93 +7.80	59.84 19.71
Phi-3.8B	Naive	50.23	51.34	55.36	57.12 _{15.78}	59.38 +8.04	61.63
	Ignore	47.45	48.39	56.89	58.36 19.97	60.74 12.35	63.18 +14.79
	Escape	53.62	52.67	57.23	59.14 16.47	61.46 18.79	63.84
Mistral-7B	Naive	58.45	59.39	65.37	67.12 17.73	70.26 + 10.87	72.42 + 13.03
	Ignore	56.47	60.74	66.89	68.42 17.68	71.57 10.83	73.78 + 13.04
	Escape	70.23	70.58	71.13	73.26 +2.68	74.82 14.24	76.37 _{†5.79}
Llama-8B	Naive	60.28	61.38	68.78	70.27	73.34 11.96	76.38 + 15.00
	Ignore	55.34	52.48	67.59	62.38 +9.90	66.39 + 13.91	69.43 _{†16.95}
	Escape	70.54	71.56	71.37	75.25 _{†3.69}	76.67 15.11	78.47 _{16.91}
Qwen-14B	Naive	65.78	68.46	80.36	$77.49_{\uparrow 9.03}$	81.12 + 12.66	81.79
	Ignore	61.38	63.47	78.23	74.69 11.22	77.83 14.36	83.67 (20.20
	Escape	74.89	74.46	79.12	$77.29_{\uparrow 2.83}$	79.23 14.77	81.28 +6.82

Code Repo

LoRA Rank

WeChat

