VIPAMIN: Visual Prompt Initialization via Embedding Selection and Subspace Expansion

NeurIPS 2025 Poster

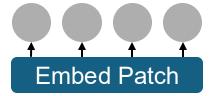
Jaekyun Park, Hye Won Chung

KAIST, School of Electrical Engineering

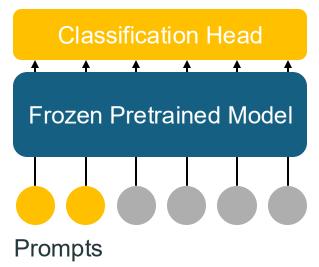
INTRODUCTION

VISUAL PROMPT TUNING

Embeddings

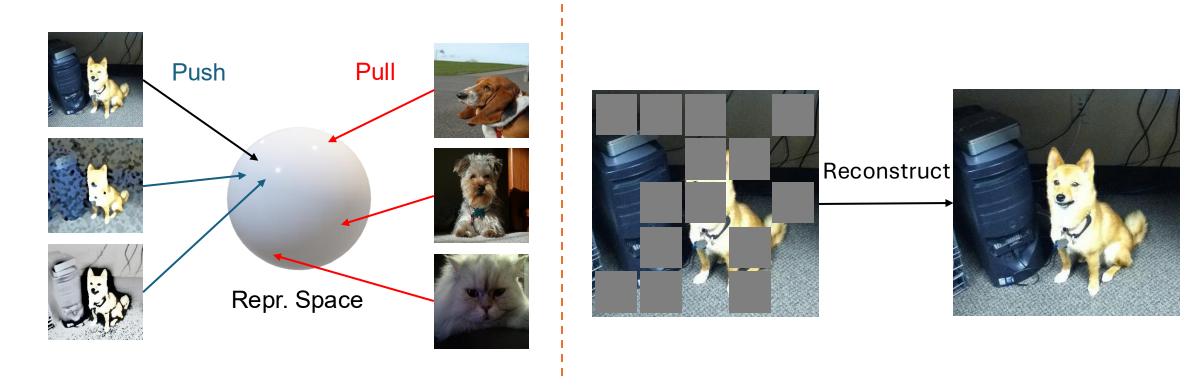


Pred: Shiba Inu!



- Efficient alternative of full fine-tuning
- Introducing a small number of trainable tokens (prompts)

SELF-SUPERVISED LEARNING



- Pretraining from large unlabeled datasets
- Contrastive learning (e.g., MoCo-v3), Masked image modeling (e.g., MAE)

MOTIVATION

MOTIVATION

Observation 1

Large performance gap between VPT and fine-tuning on dissimilar tasks



MOTIVATION

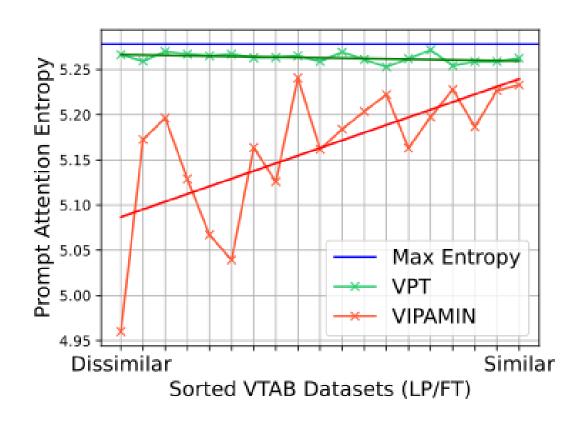
Observation 2

Self-supervised VPT fails to adapt in few-shot regimes

MOTIVATION - FAILURE MODES OF PROMPT

Uniform Attention

Cross-attention between prompt and embeddings show that prompts do not differentiate image tokens (i.e., spurious background and object are treated equal)

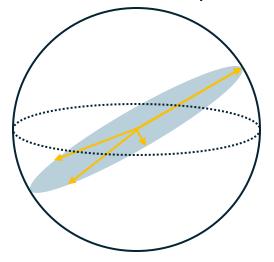


MOTIVATION - FAILURE MODES OF PROMPT

Prompt Subspace Collapse

Prompts collapse to pretrained self-attention space, not increasing the rank of new representation (even under the least similar task)

Dimensional Collapse of Trained Prompt

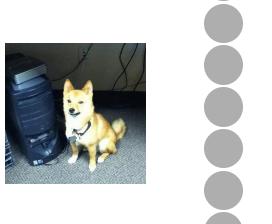


METHODOLOGY

METHODOLOGY - VIPAMIN

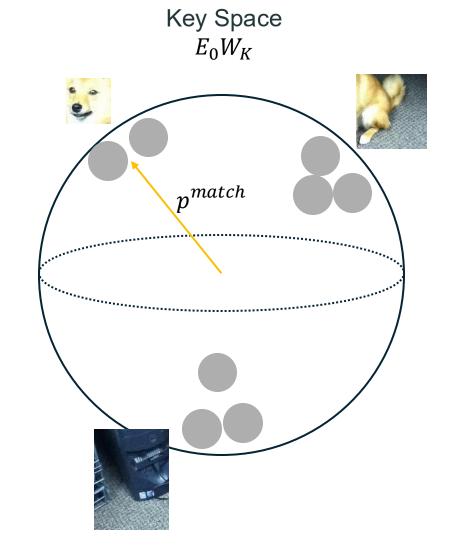
Specialization via Matching Module

Prompt is initialized with average of embeddings that share similar semantics



Embeddings

 E_0



METHODOLOGY - VIPAMIN

Specialization via Matching Module

Leads to more localized attention

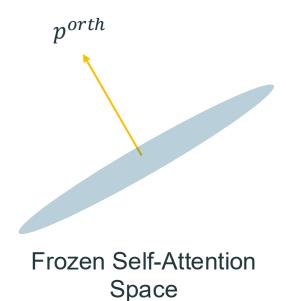


Grad CAM Visualization

METHODOLOGY - VIPAMIN

Novelty via Orthogonalizing Module

New directions beyond the pretrained space are injected



$$p^{init} = (1 - \lambda)p^{match} + \lambda p^{orth}$$

Hyperparameter λ tunes the strength of Orth. module

KEY RESULTS

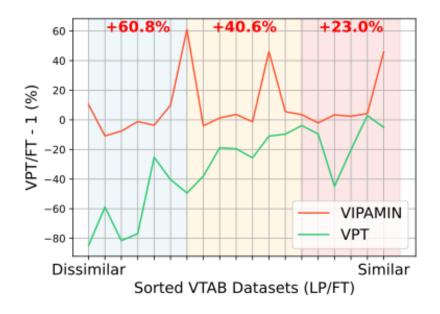
KEY RESULTS - DISTRIBUTION-SHIFTED TASKS

MoCo-v3 pretrained ViT-B/16

Method	Natural	Specialized	Structured	Mean
Full	71.95	84.72	51.98	66.23
VPT	67.34	82.26	37.55	57.94
GateVPT	74.84	83.38	49.10	65.80
SPT	74.47	83.93	<u>55.16</u>	68.33
VIPAMIN	76.75	<u>84.14</u>	56.68	69.86

MAE pretrained ViT-B/16

Method	Natural	Specialized	Structured	Mean
Full	59.31	79.68	53.82	61.28
VPT	39.96	69.65	27.50	40.96
GateVPT	47.61	76.86	36.80	49.22
SPT	62.53	80.90	53.46	<u>62.58</u>
VIPAMIN	62.60	<u>79.96</u>	57.47	64.09



KEY RESULTS – FEW-SHOT

Method	k = 1			k = 2						k=4						k = 8								
	CUB	Birds	Flowers	Dogs	Cars	Mean	CUB	Birds	Flowers	Dogs	Cars	Mean	CUB	Birds	Flowers	Dogs	Cars	Mean	CUB	Birds	Flowers	Dogs	Cars	Mean
VPT	15.7	7.7	31.4	31.2	4.7	18.1	15.6	11.7	59.0	45.4	6.4	27.6	31.4	14.3	66.2	36.8	9.9	31.7	37.3	17.2	77.8	62.8	13.5	41.7
SPT/rand	17.2	11.7	48.9	35.5	5.3	23.7	29.8	22.5	70.4	49.0	10.9	36.5	51.7	40.5	84.6	59.8	21.7	51.7	66.6	55.0	92.9	69.1	43.8	65.5
VIPAMIN	20.1	12.6	52.8	37.5	5.7	25.8	36.0	23.1	71.6	49.4	11.1	38.2	53.7	41.0	85.1	60.3	21.9	52.4	68.6	55.1	94.3	70.0	43.8	66.4

CONCLUSION

CONCLUSION

VIPAMIN is simple, efficient, and effective

- Takes only about 30 seconds
- Solves prompt specialization and representational collapse in self-supervised models
- Improves adaptation to various tasks without adding parameters or complexity

Furthermore...

- Generalizes across modality (language), model scale, and architecture
- Also works well with zero-shot out-of-distribution generalization
- Check out our poster session for more details

THANK YOU FOR LISTENING!