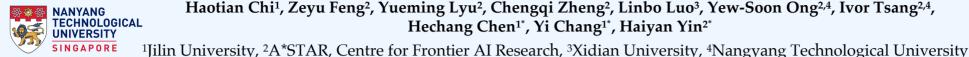


InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning



Haotian Chi¹, Zeyu Feng², Yueming Lyu², Chengqi Zheng², Linbo Luo³, Yew-Soon Ong^{2,4}, Ivor Tsang^{2,4}, Hechang Chen^{1*}, Yi Chang^{1*}, Haiyan Yin^{2*}

Paper Link

M chiht19@gmail.com

Motivations

- LLMs have become a prevalent approach for robotic code generation.
- · However, LLMs frequently hallucinate validlooking but physically infeasible code or fail to recover when execution errors occur.

Unstack: Place a green block into a green bowl

[Error Message]: "250 occurences: Step 0, Action pick, Violation: [Twin] Collision detected between object_5 object gripper finger" and "250 occurences: Step O, Action pick, Violation: [Twin] Collision detected between object_6 object gripper finger"

Constraint

Generator

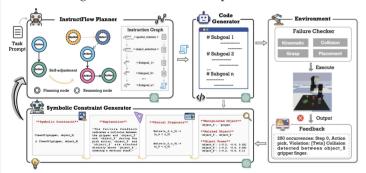
InstructFlow

Instruction Graph

 $\mathcal{V}_t = \mathcal{V}_{\mathsf{plan}} \cup \mathcal{V}_{\mathsf{reason}}$

 $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t)$

✓ We propose **InstructFlow**, a **multi-agent** framework that establishes a symbolic, feedback-driven flow of information for code generation in robotic manipulation tasks.



InstructFlow-Guided Code Generation

InstructFlow Planner

(spatial relation inference)

(local clutter estimation)

(target object selection)

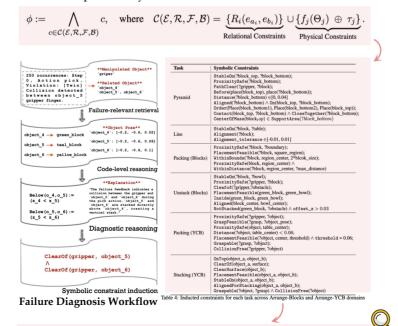
(parameter range refinement)

(plan logic inference)

Code Generator

Symbolic Constraint Induction from Failures -

• We formalize the symbolic constraint φ as a conjunction over two complementary modalities of failure correction.



 $\phi_{\text{pick}} := \text{ProximitySafe}(?object, ?neighbor) \land \text{PathClear}(?gripper, ?object),$

 $\phi_{\text{place}} := \texttt{Dist}(?pose, ?neighbor) \geq \delta_{\text{safe}} \wedge \texttt{StableOn}(?object, ?surface).$

Main Results

Empirical results validate the InstructFlow's ability to handle long-horizon, constraint-sensitive scenarios with improved success rates and sample efficiency.

	Drawing				Arrange Blocks				Arrange YCB	
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
LLM ³	40%	40%	80%	50%	0%	40%	30%	0%	0%	10%
CaP	10%	0%	40%	30%	20%	20%	20%	10%	30%	10%
PRoC3S	90%	80%	80%	90%	60%	70%	50%	60%	30%	40%
InstructFlow (Ours)	100%	80%	100%	100%	90%	100%	90%	90%	60%	70%

Table 1: Task success rates (%) across drawing, block arrangement, and YCB manipulation domains. Bold indicates top-performing results.

	Drawing				Arrange Blocks				Arrange YCB	
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
Ours	100%	80%	100%	100%	90%	100%	90%	90%	60%	70%
Ours w/o Planner Agent	90%	80%	80%	100%	50%	90%	50%	40%	40%	40%
Ours w/o Constraint Agent	100%	80%	100%	80%	40%	100%	60%	60%	30%	40%

Table 2: Ablation study results (% task success) highlighting the contributions of the InstructFlow Planner and Symbolic Constraint Generator.

Case Study

• A code snippet illustrating how InstructFlow repairs the Unstack plan by intuitively injecting a targeted object removal routine automatically derived from InstructFlow's structural reasoning.



InstructFlow can repair code respects both spatial constraints and temporal dependencies.

Conclusion

InstructFlow supports targeted code repair, avoids full-plan regeneration, and significantly enhances robustness in manipulation tasks.

 $v^{\text{plan}}: (\text{goal}, \text{state}) \rightarrow \text{subgoal}_{A}, \quad A \in \{\text{pick}, \text{place}, \ldots\}$

 $(G, \Phi) \rightarrow \text{Refine}(ParamDomain})$

 $\mathcal{T}_{\text{enotial}}: S \to \text{Rel}(\text{Objects, Adjacency})$

 $\mathcal{T}_{order}: (G, S, \Phi) \to \text{Order}(Actions)$

 $\mathcal{T}_{\text{density}}: S \to \text{Rel}(\text{Objects}, \text{Density})$