Adaptive Latent-Space Constraints in Personalized Federated Learning

Sana Avromlou^{1,2,*} D. B. Emerson¹

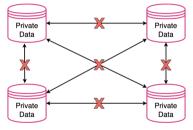
¹Vector Institute, Toronto, Ontario, CA

²Google, Toronto, Ontario, CA

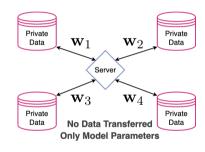
*Work done while at the Vector Institute.

Federated Learning: Training on Distributed Data

ML models are most commonly trained on a centralized pool of data. Federated Learning (FL) is used to train models on decentralized data.



Data transfer is discouraged or impossible.



Data remains in place, while model weights are communicated with a trusted entity.

Horizontal, Cross-Silo, Homogenous Model PFL

There are many FL settings, each of which may require unique approaches to facilitate distributed deep learning.

Horizontal FL: **Feature and label spaces are shared** between clients. Primary benefit is access to more training data.

Cross-Silo: Small to medium pool of clients, large compute resources, reliable training participation.

Homogenous Models: Each client is training the same model architecture.

Personalized FL: Each client trains a **unique set of model parameters**, aiming to overcome heterogeneity in distributed datasets.¹

¹Li et al., "Federated Learning: Challenges, Methods, and Future Directions"

Globally Constrained Local Model Training: Ditto³ and Beyond

Algorithm 1: Ditto with FedAvg aggregation and batch SGD.

Input: N, T, s, λ , η , \bar{w} . Set $w_i^{(i)} = \bar{w}$ for each client *i*. for t = 0, ..., T - 1 do for each client i in parallel do Set $w_c^{(i)} = \bar{w}$. for s iterations, draw batch b do $w_G^{(i)} = w_G^{(i)} - \eta \nabla \ell_i \left(b; w_G^{(i)} \right).$ $w_{I}^{(i)} = w_{I}^{(i)} - \eta \nabla \left(\ell_{i} \left(b; w_{I}^{(i)} \right) + \frac{\lambda}{2} ||w_{I}^{(i)} - \bar{w}||_{2}^{2} \right).$ end Send $w_C^{(i)}$ to server for aggregation. end $\bar{w} = \frac{1}{2} \sum_{i=1}^{N} n_i \cdot w_C^{(i)}$.

Target model at the end of training is parameterized by w_L .

Local model training is constrained to not "drift" too far from an averaged global model.

Ditto is a state-of-the-art algorithm for many FL settings with data heterogeneity.²

end

²Matsuda et al., "Benchmark for Personalized Federated Learning"

³Li et al., "Ditto: Fair and Robust Federated Learning Through Personalization"

Globally Constrained Local Model Training: Ditto³ and Beyond

Algorithm 1: Ditto with FedAvg aggregation and batch SGD.

```
Input: N, T, s, \lambda, \eta, \bar{w}.
Set w_i^{(i)} = \bar{w} for each client i.
for t = 0, ..., T - 1 do
       for each client i in parallel do
               Set w_G^{(i)} = \bar{w}.
               for s iterations, draw batch b do
                     w_G^{(i)} = w_G^{(i)} - \eta \nabla \ell_i \left( b; w_G^{(i)} \right).
                      w_{I}^{(i)} = w_{I}^{(i)} - \eta \nabla \left( \ell_{i} \left( b; w_{I}^{(i)} \right) + \frac{\lambda}{2} ||w_{I}^{(i)} - \bar{w}||_{2}^{2} \right).
                end
               Send w_c^{(i)} to server for aggregation.
       end
       \bar{w} = \frac{1}{2} \sum_{i=1}^{N} n_i \cdot w_C^{(i)}.
end
```

This measure is static and does not consider specific properties of training data.

Replace or augment this penalty with an adaptive measure targeting a different kind of drift.

Define a strong distance measure on model latent spaces: $d(f(x; \theta_L); f(x; \bar{\theta}))$.

³Li et al., "Ditto: Fair and Robust Federated Learning Through Personalization"

Adaptable Latent-Space Measures

Let $X \subset \mathbb{R}^m$ represent a model latent space and P and Q be probability measures on X induced by distinct feature maps.

Consider two maximum mean discrepancy (MMD) measures that can be optimized to tell P and Q apart.

Adaptable Latent-Space Measures⁴

Let $X \subset \mathbb{R}^m$ represent a model latent space and P and Q be probability measures on X induced by distinct feature maps.

Consider two maximum mean discrepancy (MMD) measures that can be optimized to tell ${\it P}$ and ${\it Q}$ apart.

$$\mathsf{MK\text{-}MMD}^2(P,Q;\mathcal{H}_k) = \sum_{j=1}^d \beta_j \mathsf{MMD}^2(P,Q;\mathcal{H}_{k_j}),$$

where $k_j(x,y) = e^{-\gamma_j \|x-y\|_2^2}$ for a set of $\{\gamma_j\}_{j=1}^d$.

$$\beta_* = \underset{\substack{\sum_{j=1}^d \beta_j = 1 \\ \beta > \mathbf{0}}}{\arg \max} \ \frac{\mathsf{MK-MMD}^2(P, Q; \mathcal{H}_k)}{\sigma(P, Q, \mathcal{H}_k)}.$$

VECTOR INSTITUT

⁴Gretton et al., "Optimal kernel choice for large-scale two-sample tests"

Adaptable Latent-Space Measures⁵

Let $X \subset \mathbb{R}^m$ represent a model latent space and P and Q be probability measures on X induced by distinct feature maps.

Consider two maximum mean discrepancy (MMD) measures that can be optimized to tell ${\cal P}$ and ${\cal Q}$ apart.

Define a featurization network, $\varphi(\cdot;\omega)$, parameterized by ω and deep kernel

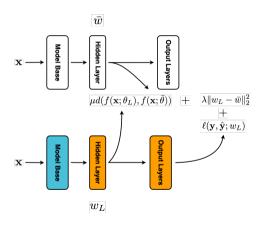
$$k_{\omega}(x, y) = (1 - \epsilon)k(\varphi(x; \omega), \varphi(y; \omega)) + \epsilon q(x, y),$$

where
$$k(x, y) = e^{-\gamma_k ||x-y||_2^2}$$
, $q(x, y) = e^{-\gamma_q ||x-y||_2^2}$.

$$\max_{\omega,\epsilon,\gamma_k,\gamma_q} \frac{\mathsf{MMD-D^2}(P,Q;\mathcal{H}_{k_\omega})}{\sigma(P,Q;\mathcal{H}_{k_\omega})}.$$

⁵Liu et al., "Learning deep kernels for non-parametric two-sample tests"

Numerical Setup



 $d(\cdot, \cdot)$ is either MK-MMD or MMD-D, acting on the latent spaces of the local and frozen global models.

MK-MMD or MMD-D measures are re-optimized periodically using training data, adapting to changing feature maps.

Weights $\mu \geq 0$ and $\lambda \geq 0$ balance the MMD and standard Ditto constraints.

Experimental Results: Ditto

			Without Ditto ($\lambda=0$)		With Ditto ($\lambda > 0$)	
Dataset	FedAvg	Ditto	MMD-D	MK-MMD	MMD-D	MK-MMD
Synthetic _{0.0} ⁶ Synthetic _{0.5} ⁶	84.733 85.458	89.129 85.533	90.237* 91.270*	90.066* 90.262*	89.458* 89.695*	89.258* 88.104*
RxRx1 ⁷	35.207	65.629	67.478*	67.078*	67.755*	66.892*
CIFAR-10 _{0.1} CIFAR-10 _{0.5} CIFAR-10 _{5.0}	71.220 75.575 77.284	84.930 80.702 77.658	83.789 75.094 67.729	84.439 76.564 68.832	85.214 * 80.696 77.739 *	84.900 80.976 * 77.739 *
Fed-ISIC2019 ⁸	64.057	71.350	64.302	62.677	72.226*	71.267

⁶Li et al., "Federated Optimization in Heterogeneous Networks"

 $^{^7}$ Sypetkowski et al., "RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods"

⁸Terrail et al., "FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings"

Experimental Results: MR-MTL

Dataset	MR-MTL	$+MK ext{-}MMD$	+MMD-D
Synthetic _{0.0} Synthetic _{0.5}	90.879 86.750	90.708 90 . 958 *	91.142 * 90.337*
R×R×1	64.065	65.791*	66.673*
CIFAR-10 _{0.1} CIFAR-10 _{0.5} CIFAR-10 _{5.0}	79.516 73.361 68.224	81.269 * 74.333* 69.487*	80.307* 74.446 * 70.353 *
Fed-ISIC2019	70.628	68.180	70.366

Thank you for listening!

- Gretton, Arthur et al. "Optimal kernel choice for large-scale two-sample tests". In: Advances in neural information processing systems 25 (2012).
- Li, T. et al. "Ditto: Fair and Robust Federated Learning Through Personalization". In: Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 6357–6368. URL: https://proceedings.mlr.press/v139/li21h.html.
- Li, Tian et al. "Federated Learning: Challenges, Methods, and Future Directions".
 - In: IEEE Signal Processing Magazine 37.3 (2020), pp. 50-60.
- Li, Tian et al. "Federated Optimization in Heterogeneous Networks". In: Proceedings of Machine Learning and Systems. Ed. by I. Dhillon, D. Papailiopoulos, and V. Sze. Vol. 2. 2020, pp. 429-450. URL: https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.
- Liu, Feng et al. "Learning deep kernels for non-parametric two-sample tests". In: International conference on machine learning. PMLR. 2020, pp. 6316–6326.

- Matsuda, K. et al. "Benchmark for Personalized Federated Learning". In: *IEEE Open Journal of the Computer Society* 5.01 (2024), pp. 2–13. ISSN: 2644-1268. DOI: 10.1109/0JCS.2023.3332351.
- Sutherland, Danica J. et al. "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy". In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL:
 - https://openreview.net/forum?id=HJWHIKqgl.
- Sypetkowski, Maciej et al. "RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods". In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2023, pp. 4285–4294.
- Terrail, Jean Ogier Du et al. "FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings". In: NeurIPS 2022 Thirty-sixth Conference on Neural Information Processing Systems. Proceedings of NeurIPS. New Orleans, United States, Nov. 2022. URL: https://hal.science/hal-03900026.