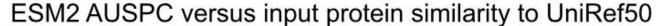
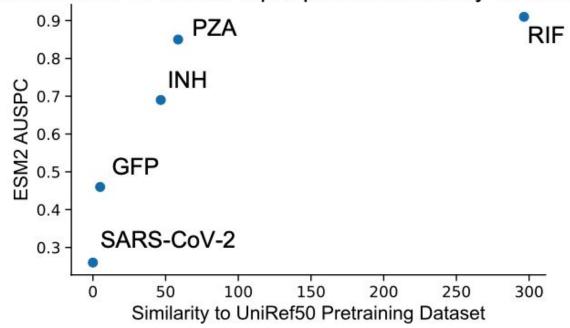
Evolutionary Reasoning Does Not Arise in Standard Usage of Protein Language Models

Yasha Ektefaie*, Andrew Shen*, Lavik Jain, Maha Farhat, Marinka Zitnik

Existing protein language models struggle to generalize to out of distribution sequences





How can we improve generalizability?

Evolutionary Modeling versus Evolutionary Reasoning

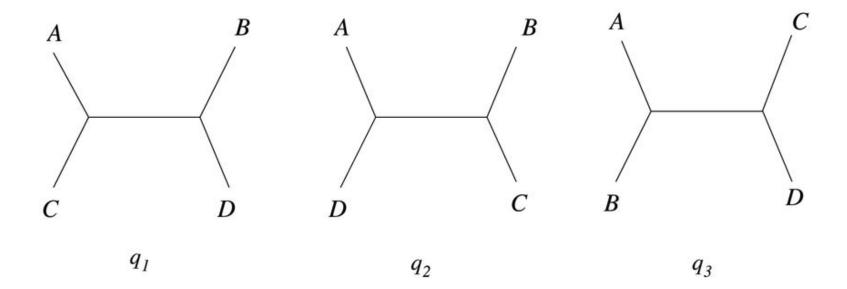
- Evolutionary modeling: learn residue-level distributions on a single-sequence, matching the marginal sequence distribution
- Evolutionary reasoning: inferring relationships among sequences from unaligned sequences

Open questions

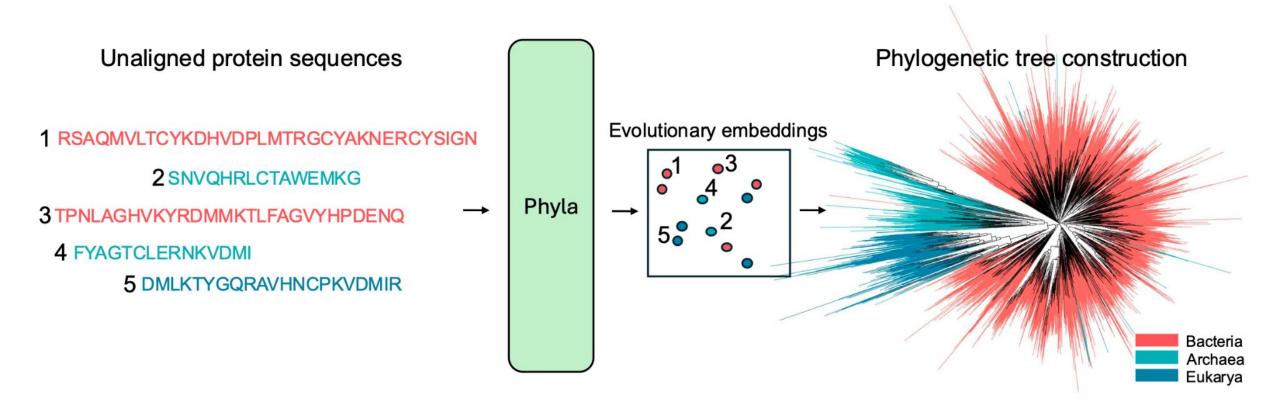
- 1. Are current PLMs capable of evolutionary reasoning?
- 2. And if not, how must we reimagine their architecture and training to enable them to do so?

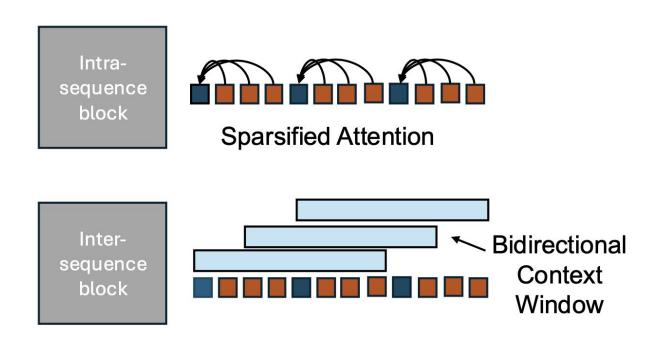
Tree Loss

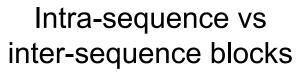
- Quartet loss
 - Samples sets of quartets
 - Considers all possible tree orientations in the quartet
 - Teaches the model to recapitulate ground truth distances

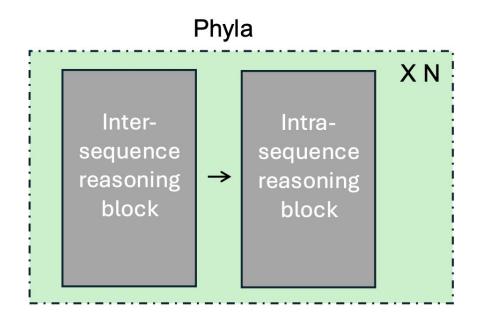


Phyla Overview



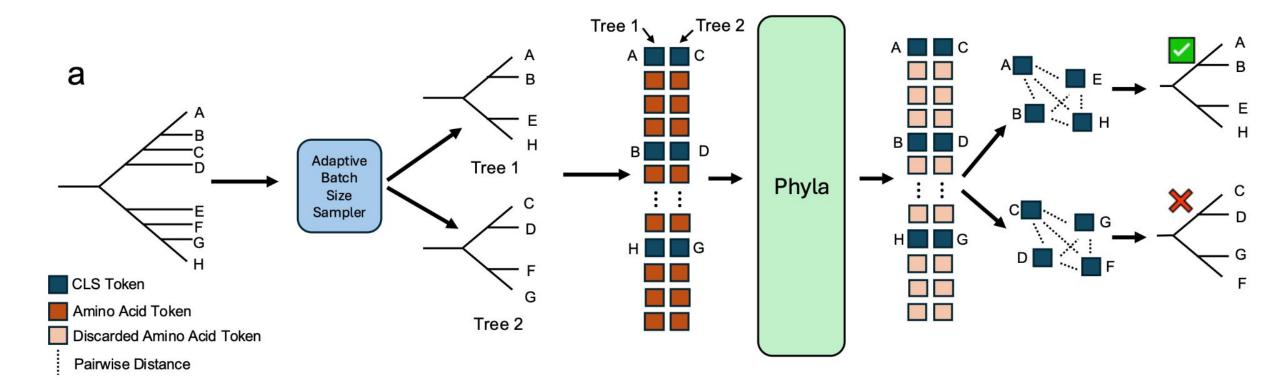






Phyla blocks

Phyla Model Training

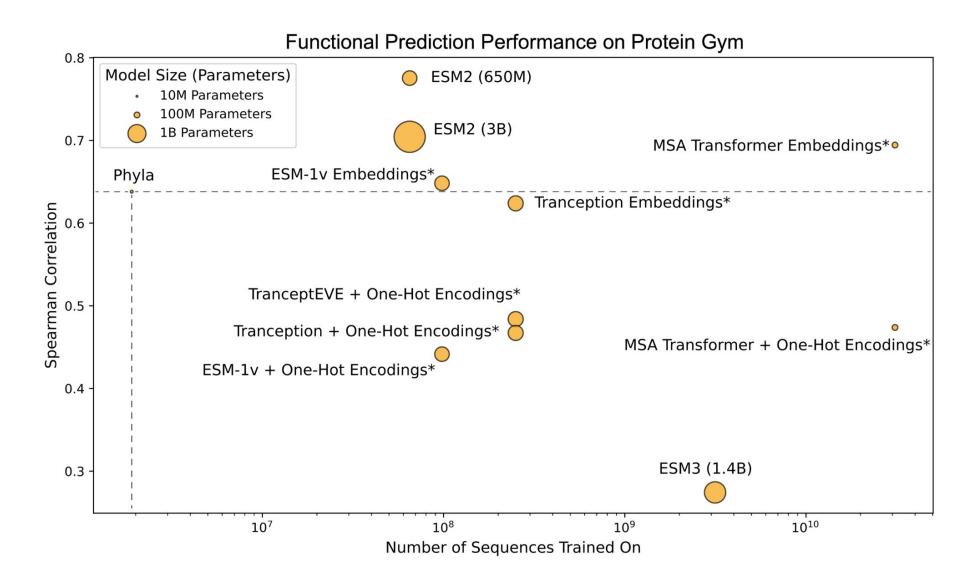


Evolutionary Reasoning Benchmark

- Tree Reconstruction
 - How well do the models reconstruct phylogenetic trees?
 - TreeBase: 1,533 trees
 - TreeFam: 9,586 trees
- Taxonomic Clustering
 - How well do the models cluster evolutionarily similar sequences?
 - Genome Taxonomy Database (GTDB): bacterial isolates
 - Stratified by Class, Order, Family, Genus, Species

Model	$\textbf{TreeBase} \downarrow$	$\mathbf{TreeFam} \downarrow$	Class ↑	Order \uparrow	Family \uparrow	Genus ↑	Species ↑
Hamming Distance	0.75	0.75	_	=	_	_	_
MAFFT+FastTree	0.65	0.32	1_	_	_	_	_
ESM2 (650M)	0.78	0.67	0.64	0.66	0.68	0.71	0.75
ESM2 (3B)	0.79	0.67	0.55	0.56	0.57	0.59	0.67
ESM3 (1.4B)	0.81	0.72	0.61	0.63	0.66	0.67	0.72
ESM C (300M)	0.77	0.71	0.57	0.60	0.62	0.67	0.71
ESM C (600M)	0.80	0.73	0.61	0.66	0.66	<u>0.71</u>	0.75
Evo 2 (7B)	0.84	0.84	0.50	0.54	0.55	0.55	0.64
ProGen2-Large (2.7B)	0.77	0.68	0.60	0.65	0.66	<u>0.71</u>	0.75
ProGen2-XLarge (6.4B)	0.86	0.82	0.52	0.55	0.57	0.61	0.68
PHYLA (24M)	0.73	0.58	0.71	0.76	0.87	0.93	0.98

Functional Prediction



Generalizability

Model	Low-Overlap	High-Overlap	All Datasets
ESM2	0.59	0.80	0.78
PHYLA-MLM	0.53	0.61	0.55
PHYLA-NoAttention	0.40	0.53	0.44
PHYLA	0.62	0.68	0.64

Also minimal train-test overlap <0.6% on Treebase and <3.4% on TreeFam

Applications of Phyla

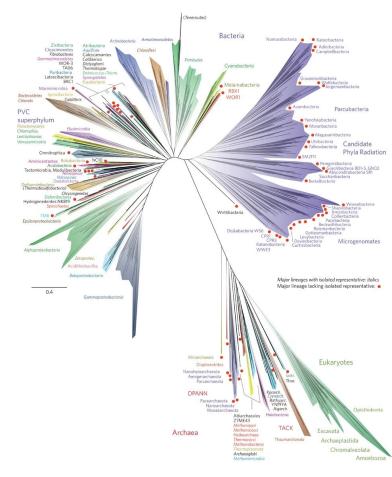
A new view of the tree of life. Laura A. Hug, Brett J. Baker, et al. Nature

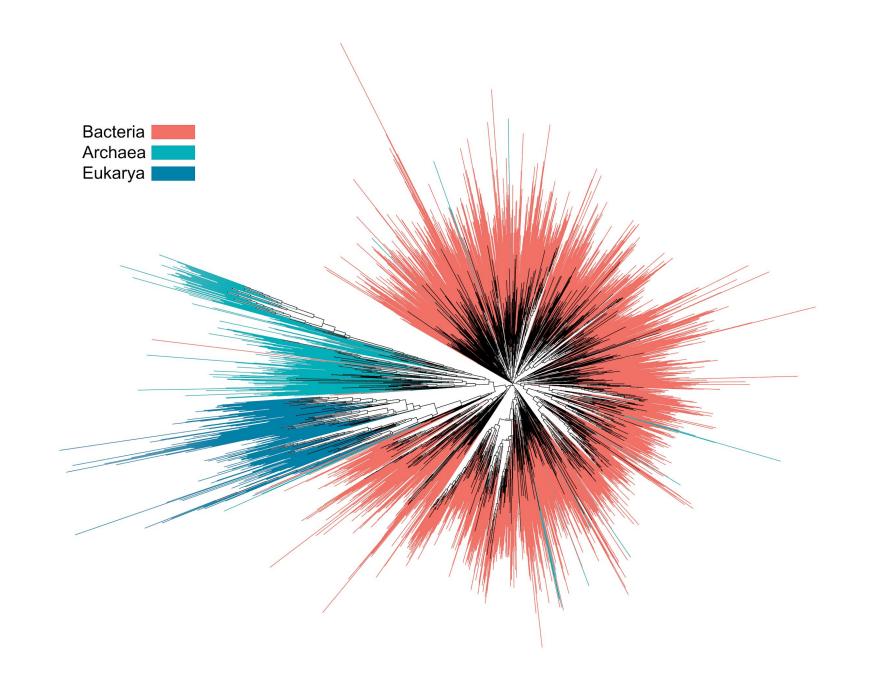
Microbiology. 2016

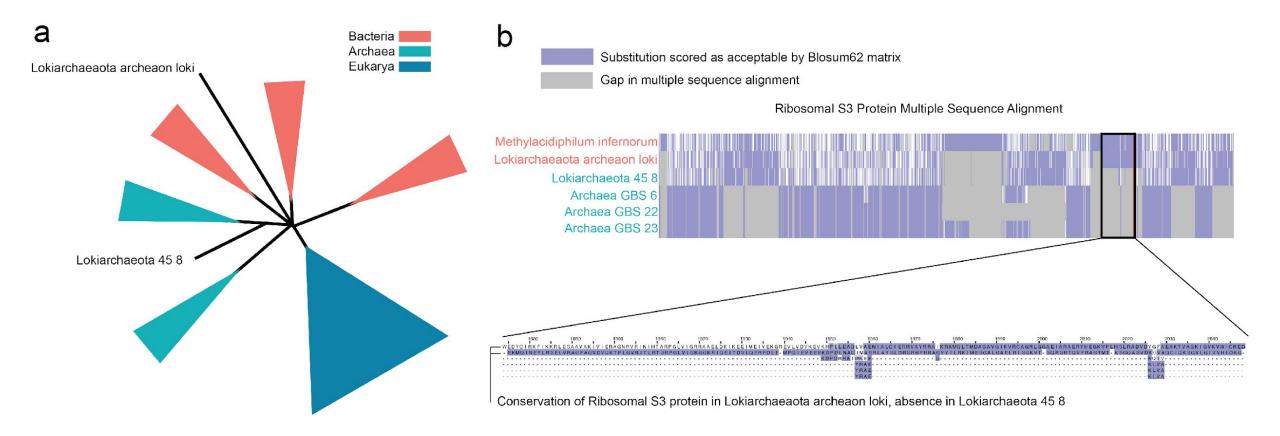
3083 Ribosomal Protein Sequences

3,840 computational hours

- Feed this to Phyla
 - Constructed tree in 16 hours
- How does this tree differ from tree of life?
 - Are these differences meaningful?







Acknowledgments

Advisors

Marinka Zitnik, Maha Farhat

Co-authors

Lavik Jain

BLAVATNIK INSTITUTE BIOMEDICAL INFORMATICS

SCHMIDT CENTER

AT BROAD INSTITUTE

