

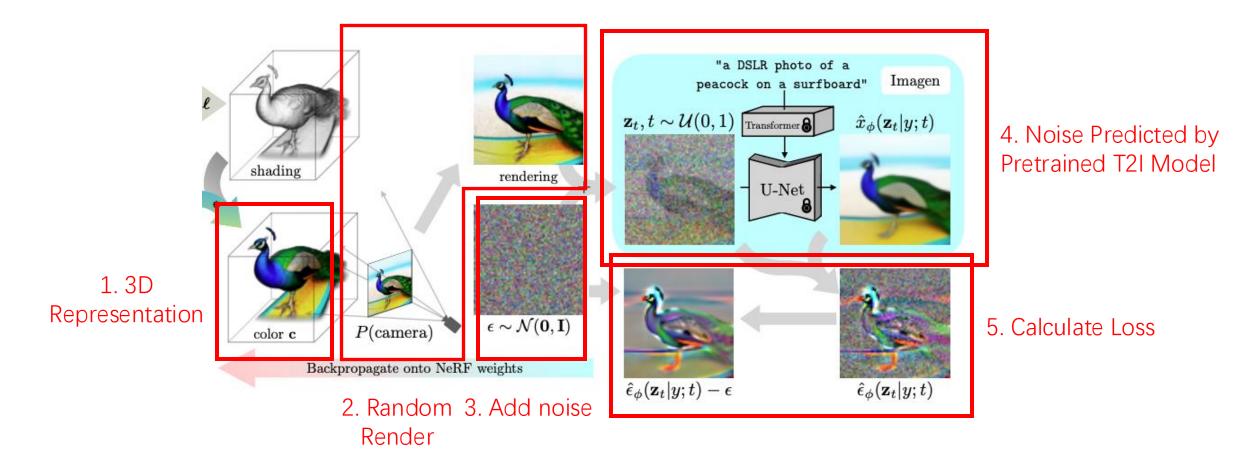
Walking the Schrödinger Bridge: A Direct Trajectory for Text-to-3D Generation

Ziying Li, Xuequan Lu, Xinkui Zhao*, Guanjie Cheng, Shuiguang Deng, Jianwei Yin

NeurIPS 2025 Poster

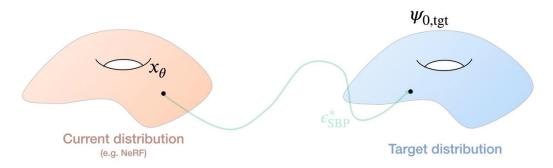
Preliminaries: SDS (Score Distillation Sampling)

$$\nabla_{\theta} \mathcal{L}_{SDS}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$
(3)



A Better Understanding of SDS:

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$
(3)



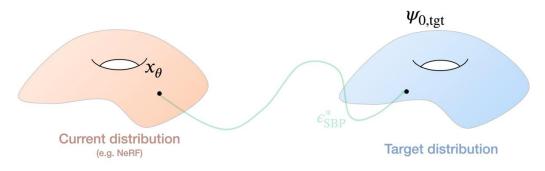
SDS Bridge Approximation

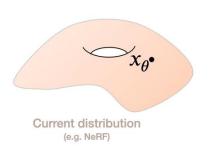
Ideally.....

A Better Understanding of SDS:

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

(3)







SDS Bridge Approximation

Ideally.....

In reality.....

 $x_{\theta,t}$

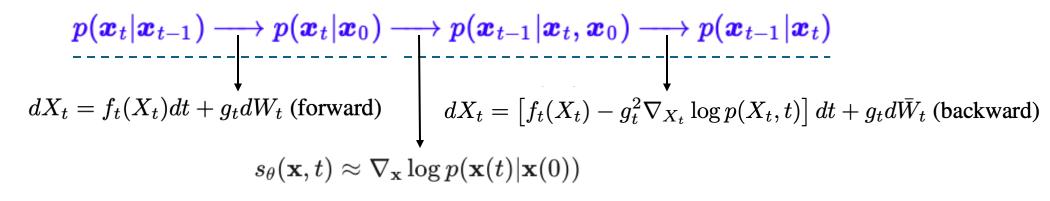
Predicted source distribution != source/current distribution!

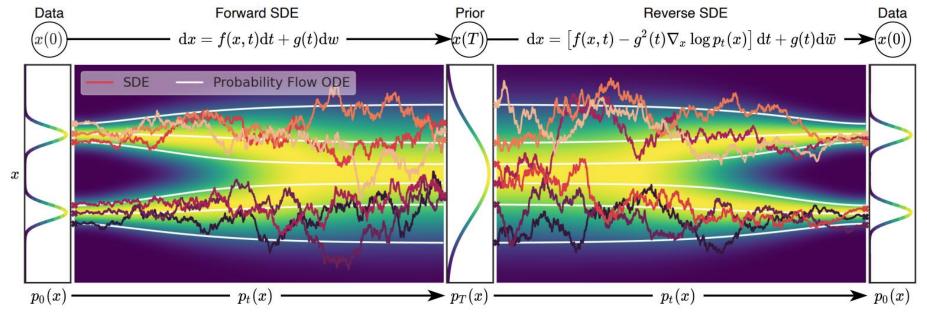
Preliminaries: What Diffusion Model/SGM Does

Diffusion models/SGM:

Diffusion Process

Reverse Process



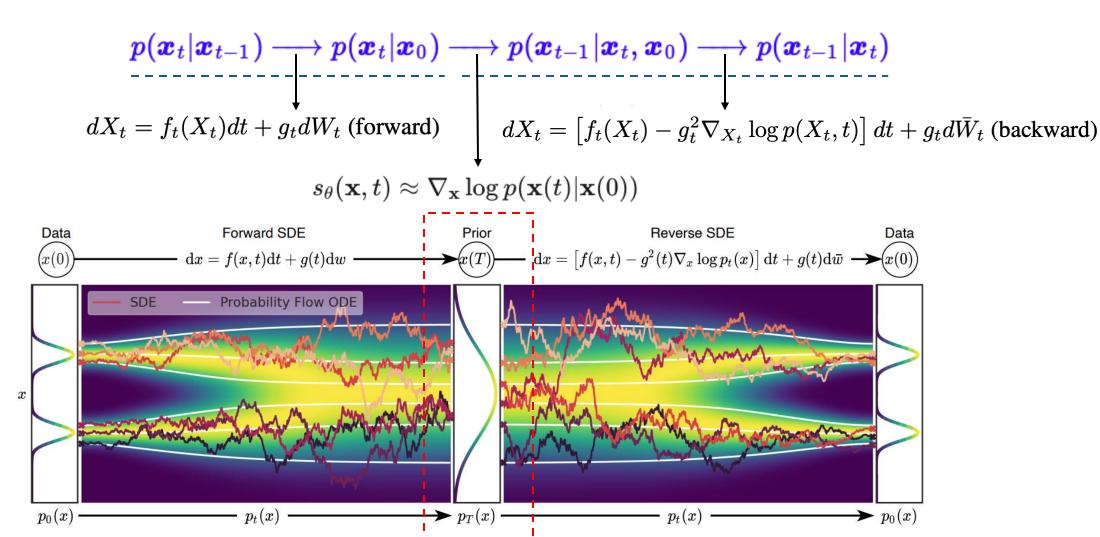


Preliminaries: What Diffusion Model/SGM Does

Diffusion models/SGM:

Diffusion Process

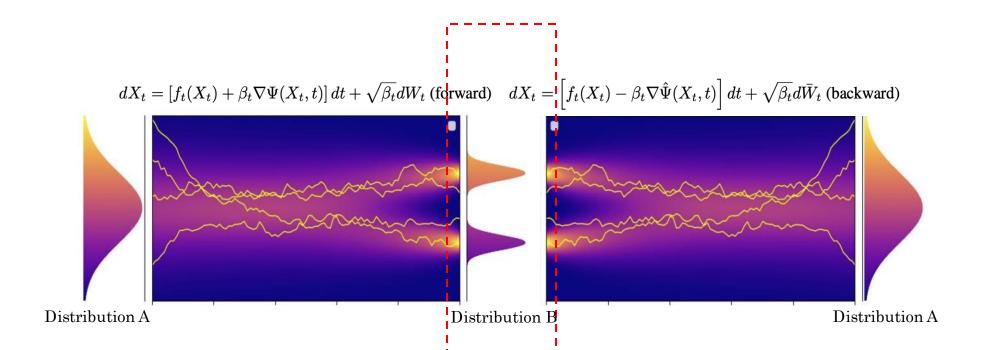
Reverse Process



Preliminaries: Schrödinger Bridge (SB)

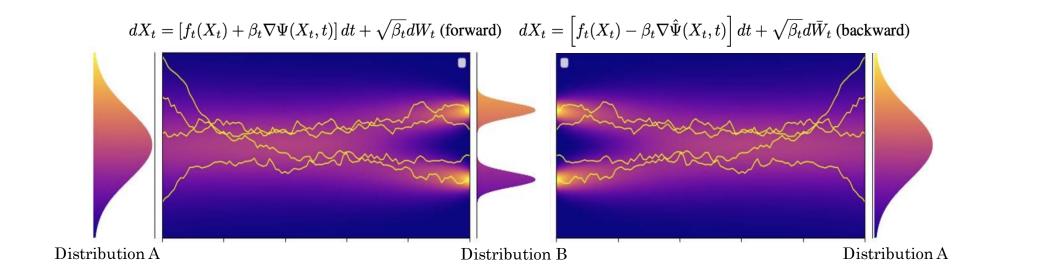
Non-linear SB

System (what we care about) $\nabla \hat{\Psi}(X_t, t) \iff$ Reverse drift term

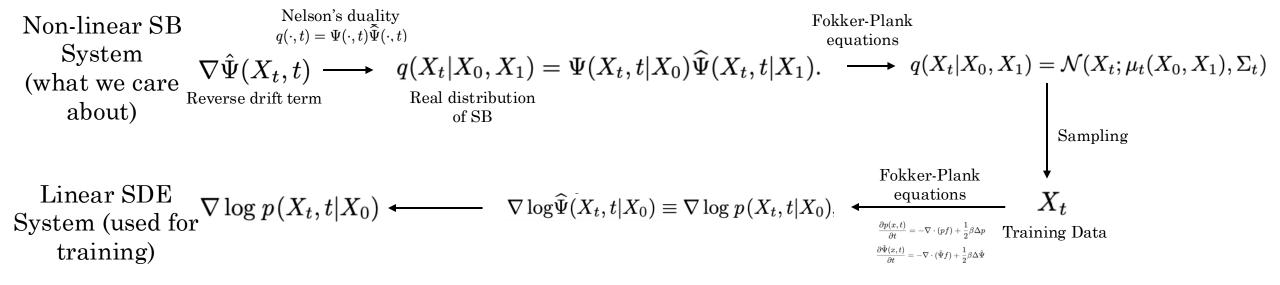


Preliminaries: Schrödinger Bridge (SB)

Non-linear SB System (what we care about)
$$\nabla \hat{\Psi}(X_t,t) = \Psi(\cdot,t)\hat{\Psi}(\cdot,t)$$
 $q(X_t|X_0,X_1) = \Psi(X_t,t|X_0)\hat{\Psi}(X_t,t|X_1).$ $q(X_t|X_0,X_1) = \mathcal{N}(X_t;\mu_t(X_0,X_1),\Sigma_t)$ Real distribution of SB Sampling $q(X_t,t|X_0)$ $q(X_t|X_0,X_1) = \mathcal{N}(X_t;\mu_t(X_0,X_1),\Sigma_t)$ $q(X_t|X_0,X_1) = \mathcal{N}(X_t;\mu_t(X_$



Preliminaries: Schrödinger Bridge (SB)



Schrödinger Bridge (SB) can directly use pre-trained diffusion models, and can model the trajectory between two random distributions!

Now, we can get two points:

Predicted source distribution != source/current distribution!

Schrödinger Bridge (SB) can directly use pre-trained diffusion models, and can model the trajectory between two random distributions!

Now, we can get two points:

Predicted source distribution != source/current distribution!

Schrödinger Bridge (SB) solve the above problem of SDS

Schrödinger Bridge (SB) can directly use pre-trained diffusion models, and can model the trajectory between two random distributions!

Score Distillation Sampling as a Special Case of Schrödinger Bridge

$$-\nabla_{X_t}\log\hat{\Psi}(X_t,t) \xrightarrow{\text{Nelson's duality}} -\nabla_{X_t}\log\left(\frac{q(X_t,t)}{\Psi(X_t,t)}\right) \xrightarrow{\text{SDS case}} -\nabla_{X_t}\log\left(\frac{q(X_t,t)}{\Psi(X_t,t)}\right) \xrightarrow{\text{SDS case}} -\nabla_{X_t}\log\left(\frac{q(X_t,t)}{1}\right)$$

$$s_{\theta}(X_t,t) \leftarrow -\nabla_{X_t}\log p(X_t,t) \xrightarrow{\text{if } \Psi(x,t) \approx 1, \text{ then its gradient } \nabla \log \Psi(X_t,t) \approx 0.} -\nabla_{X_t}\log q(X_t,t)$$

$$\text{SDS operates using this learned score!}$$

$$\text{SB's forward: } dX_t = [f_t(X_t) + \beta_t \nabla \Psi(X_t,t)] dt + \sqrt{\beta_t} dW_t \text{ (forward)} \\ \text{has non-linear drift term vanishes.} \\ \text{i.e., SGM forward = SB's forward}$$

TraCe: Overview

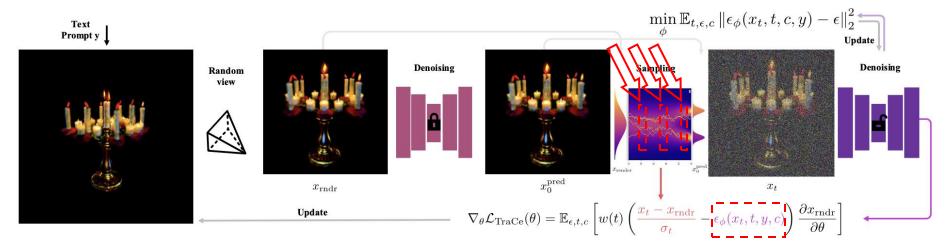


Figure 3: Overview of Trajectory-Centric Distillation (TraCe). Our approach optimizes 3D parameters θ by computing a distillation gradient with a LoRA-adapted 2D diffusion model, ϵ_{ϕ} . Given a text prompt y and camera parameters c, (1) The current 3D model is rendered in a random view to produce x_{rndr} . (2) An ideal target view x_0^{pred} is estimated from x_{rndr} using a pre-trained diffusion model $\epsilon_{\text{pretrain}}$ via one-step denoising. (3) An intermediate latent x_t is sampled from the analytic bridge posterior $q(x_t \mid x_0^{\text{pred}}, x_{\text{rndr}})$ at time t. (4) The LoRA model ϵ_{ϕ} predicts the noise for x_t , and the difference between this prediction and the target noise is computed. (5) This difference directs the calculation of the TraCe gradient $\nabla_{\theta} \mathcal{L}_{\text{TraCe}}$, and drives the update of LoRA parameters ϕ .

Results:

Figure 4: **Qualitative comparisons.** We present visual examples with the same text prompt.

Results:

Table 1: **Quantitative comparisons.** Comparison of different methods on CLIP Score, GPTEval3D Score, ImageReward Score, running time, and VRAM usage. We report mean and standard deviation across 83 prompts and 120 views.

Method	CLIP Score (%) ↑			GPTEval3D	ImageReward↑	Time	VRAM
	ViT-L/14	ViT-B/16	ViT-B/32	(Overall)↑			V 222212
SDS [47]	68.6146±7.9134	27.7049±3.7004	27.5561±3.5893	1018.09	-0.4329±0.9125	10min	18147MiB
CSD [48]	68.0282 ± 7.5093	27.0886 ± 3.7342	26.5844 ± 3.8703	983.04	-0.6715 ± 0.7482	11min	19804MiB
VSD [45]	67.2697 ± 8.5573	27.0749 ± 3.9675	26.9722 ± 3.9563	1007.49	-0.5330 ± 0.8927	17min	26473MiB
ISM [23]	69.0093 ± 10.2400	27.5460 ± 3.6817	26.9822 ± 3.5495	1012.37	-0.3904 ± 0.9503	20min	10151MiB
SDI [29]	63.0409 ± 11.7841	25.6487 ± 5.2540	25.5421 ± 5.0903	971.98	-0.8334 ± 1.0391	10min	16011MiB
TraCe	69.2609 ± 7.8366	27.9334 ± 3.7382	27.7049 ± 3.8671	1028.03	-0.2855 ± 0.8909	14min	18741MiB

Github