MoME: Mixture of Matryoshka Experts for Audio-Visual Speech Recognition

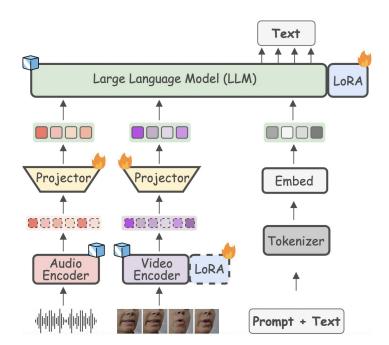
U. Cappellazzo¹, M. Kim², P. Ma², H. Chen², X. Liu², S. Petridis¹, M. Pantic¹

Audio-Visual Speech Recognition (AVSR) seeks to enhance the robustness and accuracy of speech recognition systems under <u>noisy</u> conditions by incorporating an additional *visual* modality (i.e., lip movements).

Audio-Visual Speech Recognition (AVSR) seeks to enhance the robustness and accuracy of speech recognition systems under <u>noisy</u> conditions by incorporating an additional *visual* modality (i.e., lip movements).

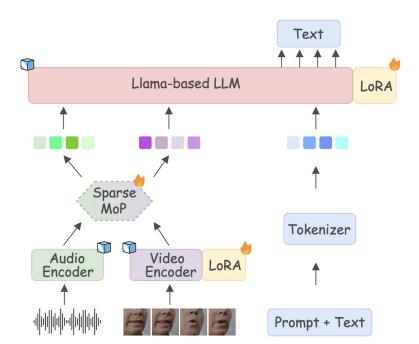
Recently, multiple works have demonstrated that Large Language Models (LLMs) can be harnessed to carry out the task of AVSR, ASR, and VSR, achieving state-of-the-art results on multiple benchmarks.

■ Examples of LLM-based AVSR systems are: Llama-AVSR [ICASSP 2025], Llama-SMoP [Interspeech 2025], and MMS-Llama [ACL Findings 2025].



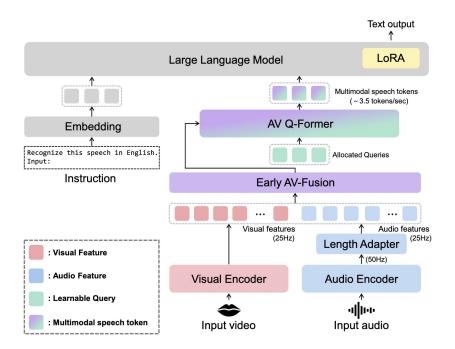
[Cappellazzo et al., 2025(a)]

■ Examples of LLM-based AVSR systems are: Llama-AVSR [ICASSP 2025], Llama-SMoP [Interspeech 2025], and MMS-Llama [ACL Findings 2025].



[Cappellazzo et al., 2025(b)]

Examples of LLM-based AVSR systems are: Llama-AVSR [ICASSP 2025], Llama-SMoP [Interspeech 2025], and MMS-Llama [ACL Findings 2025].



[Yeo et al., 2025]

Accuray/Efficiency Tradeoff

■ Multimodal LLMs are token-hungry: they tend to perform better when provided with fine-grained, dense token representations.

Accuray/Efficiency Tradeoff

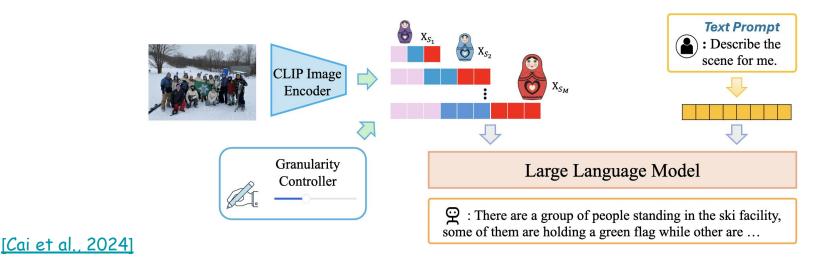
- ☐ Multimodal LLMs are **token-hungry**: they tend to perform better when provided with *fine-grained*, *dense* token representations.
- Therefore, it is common practice to **reduce** the number of tokens before feeding them to the LLM (e.g., Q-Former/avg pooling).

Accuray/Efficiency Tradeoff

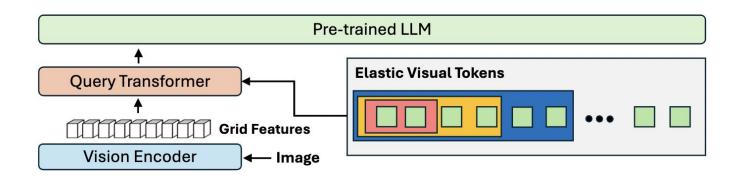
- ☐ Multimodal LLMs are **token-hungry**: they tend to perform better when provided with *fine-grained*, *dense* token representations.
- Therefore, it is common practice to **reduce** the number of tokens before feeding them to the LLM (e.g., Q-Former/avg pooling).
- However, since they require fixing a compression rate in advance, they produce a single fixed-length output, offering no flexibility to balance information density and efficiency at inference time.

To obviate this issue, Matryoshka-based MLLMs exploit the matryoshka representation learning (MRL) principle to train models across multiple token granularities, allowing the number of multimodal tokens to be dynamically adjusted at inference time.

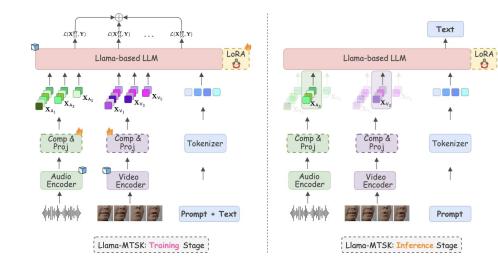
- To obviate this issue, Matryoshka-based MLLMs exploit the matryoshka representation learning (MRL) principle to train models across multiple token granularities, allowing the number of multimodal tokens to be dynamically adjusted at inference time.
- Models of this kind include M³, MQT, and Llama-MTSK.



- To obviate this issue, Matryoshka-based MLLMs exploit the matryoshka representation learning (MRL) principle to train models across multiple token granularities, allowing the number of multimodal tokens to be dynamically adjusted at inference time.
- ☐ Models of this kind include M³, MQT, and Llama-MTSK.



- To obviate this issue, Matryoshka-based MLLMs exploit the matryoshka representation learning (MRL) principle to train models across multiple token granularities, allowing the number of multimodal tokens to be dynamically adjusted at inference.
- Models of this kind include M³, MQT, and Llama-MTSK.



Matryoshka-based MLLMs: Current Limitations

☐ Current Matryoshka models rely on *uniform*, *monolithic* representations at each scale and *treat each resolution independently* during training.

Matryoshka-based MLLMs: Current Limitations

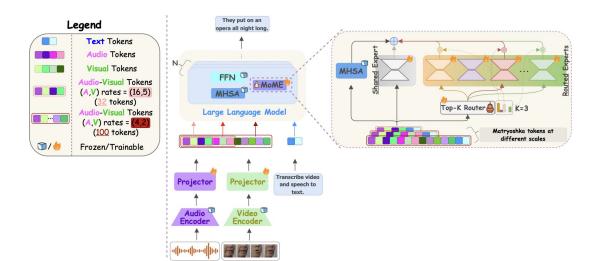
- ☐ Current Matryoshka models rely on *uniform*, *monolithic* representations at each scale and *treat each resolution independently* during training.
- This lack of inter-scale interaction forces the model to compromise between generality and specialization, often yielding suboptimal performance at higher rates.

■ MoME is a novel module that unifies MRL and MoE paradigms.

- MoME is a novel module that unifies MRL and MoE paradigms.
- It introduces a set of *routed* and *shared* experts trained jointly across granularities. This design allows experts to learn fine-grained (high-resolution) features that can later be reused when processing compressed (low-resolution) tokens at inference time.

- MoME is a novel module that unifies MRL and MoE paradigms.
- It introduces a set of *routed* and *shared* experts trained jointly across granularities. This design allows experts to learn fine-grained (high-resolution) features that can later be reused when processing compressed (low-resolution) tokens at inference time.
- By aligning expert training across scales, MoME promotes cross-granularity knowledge transfer and improves the robustness of the model under aggressive compression.

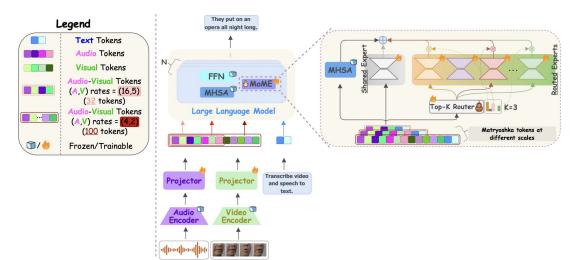
■ **MoME** is inserted in <u>parallel</u> with existing LLM layers (MHSA, FFN, entire layer), allowing efficient fine-tuning of a frozen pre-trained module.



- **MoME** is inserted in parallel with existing LLM layers (MHSA, FFN, entire layer), allowing efficient fine-tuning of a frozen pre-trained module.
- In addition to routed experts, **MoME** uses one *shared* expert to capture global and scale-invariant knowledge.



- **MoME** is inserted in parallel with existing LLM layers (MHSA, FFN, entire layer), allowing efficient fine-tuning of a frozen pre-trained module.
- In addition to routed experts, **MoME** uses one shared expert to capture global and scale-invariant knowledge.
- Crucially, both the experts and router in each **MoME** module are shared across all Matryoshka sequences. This design encourages the router to activate similar subsets of routed experts across different granularities, creating implicit alignment.



Method	Active		LRS2	Dataset	t I	Active	ſ	LRS3	Dataset	t I
	Params	(4,2)	(4,5)	(16,2)	(16,5)	Params	(4,2)	(4,5)	(16,2)	(16,5)
Llama-AVSR [14] [‡]	27.5M	4.1	4.5	5.3	8.1	6.8M	2.4	2.8	3.3	4.1
Llama-MTSK MS [23]	27.5M	4.8	5.9	6.4	8.9	8.1M	2.6	2.7	3.7	4.1
Llama-MTSK SS [23]	27.5M	3.4	4.7	4.8	6.4	8.1M	2.3	2.2	3.3	3.6
Llama-MTSK MSS [23]	55.0M	3.6	4.8	6.1	9.0	13.6M	2.4	2.4	3.2	3.5
MoME-23/4-MHSA-I [‡]	12.7M	3.2	3.1	4.9	5.3	3.5M	2.1	1.9	3.3	3.7
MoME-23/4-FFN	12.7M	3.2	3.1	4.5	4.6	3.5M	2.1	2.2	4.0	4.0
MoME-23/4-MHSA	12.7M	2.9	3.0	4.2	4.3	3.5M	1.8	1.7	2.9	2.9
MoME-23/4-LAYER	12.7M	2.7	2.7	4.2	4.2	3.5M	1.5	1.8	3.1	3.2
MoME-23/4-LAYER	2.3M	3.0	3.2	4.3	4.7	0.9M	2.0	2.2	3.2	3.7

Results on LRS2 & LRS3 datasets.

Method	Active		LRS2	Dataset	;	Active		LRS3	LRS3 Dataset			
	Params	(4,2)	(4,5)	(16,2)	(16,5)	Params	(4,2)	(4,5)	(16,2)	(16,5)		
Llama-AVSR [14] [‡]	27.5M	4.1	4.5	5.3	8.1	6.8M	2.4	2.8	3.3	4.1		
Llama-MTSK MS [23]	27.5M	4.8	5.9	6.4	8.9	8.1M	2.6	2.7	3.7	4.1		
Llama-MTSK SS [23]	27.5M	3.4	4.7	4.8	6.4	8.1M	2.3	2.2	3.3	3.6		
Llama-MTSK MSS [23]	55.0M	3.6	4.8	6.1	9.0	13.6M	2.4	2.4	3.2	3.5		
MoME-23/4-MHSA-I [‡]	12.7M	3.2	3.1	4.9	5.3	3.5M	2.1	1.9	3.3	3.7		
MoME-23/4-FFN	12.7M	3.2	3.1	4.5	4.6	3.5M	2.1	2.2	4.0	4.0		
MoME-23/4-MHSA	12.7M	2.9	3.0	4.2	4.3	3.5M	1.8	1.7	2.9	2.9		
MoME-23/4-LAYER	12.7M	2.7	2.7	4.2	4.2	3.5M	1.5	1.8	3.1	3.2		
MoME-23/4-LAYER	2.3M	3.0	3.2	4.3	4.7	0.9M	2.0	2.2	3.2	3.7		

- Results on LRS2 & LRS3 datasets.
- Results across multiple compression rates.

Method	Active	LRS2 Dataset				Active LRS3 Data				set
	Params	(4,2)	(4,5)	(16,2)	(16,5)	Params	(4,2)	(4,5)	(16,2)	(16,5)
Llama-AVSR [14] [‡]	27.5M	4.1	4.5	5.3	8.1	6.8M	2.4	2.8	3.3	4.1
Llama-MTSK MS [23]	27.5M	4.8	5.9	6.4	8.9	8.1M	2.6	2.7	3.7	4.1
Llama-MTSK SS [23]	27.5M	3.4	4.7	4.8	6.4	8.1M	2.3	2.2	3.3	3.6
Llama-MTSK MSS [23]	55.0M	3.6	4.8	6.1	9.0	13.6M	2.4	2.4	3.2	3.5
MoME-23/4-MHSA-I [‡]	12.7M	3.2	3.1	4.9	5.3	3.5M	2.1	1.9	3.3	3.7
MoME-23/4-FFN	12.7M	3.2	3.1	4.5	4.6	3.5M	2.1	2.2	4.0	4.0
MoME-23/4-MHSA	12.7M	2.9	3.0	4.2	4.3	3.5M	1.8	1.7	2.9	2.9
MoME-23/4-LAYER	12.7M	2.7	2.7	4.2	4.2	3.5M	1.5	1.8	3.1	3.2
MoME-23/4-LAYER	2.3M	3.0	3.2	4.3	4.7	0.9M	2.0	2.2	3.2	3.7

Results on LRS2 & LRS3 datasets.

Results across multiple compression rates.

MoME consistently outperforms the other baselines across all rates.

Method	Active		LRS2	Dataset	t	Active	LRS3 Dataset				
	Params	(4,2)	(4,5)	(16,2)	(16,5)	Params	(4,2)	(4,5)	(16,2)	(16,5)	
Llama-AVSR [14] [‡]	27.5M	4.1	4.5	5.3	8.1	6.8M	2.4	2.8	3.3	4.1	
Llama-MTSK MS [23]	27.5M	4.8	5.9	6.4	8.9	8.1M	2.6	2.7	3.7	4.1	
Llama-MTSK SS [23]	27.5M	3.4	4.7	4.8	6.4	8.1M	2.3	2.2	3.3	3.6	
Llama-MTSK MSS [23]	55.0M	3.6	4.8	6.1	9.0	13.6M	2.4	2.4	3.2	3.5	
MoME-23/4-MHSA-I [‡]	12.7M	3.2	3.1	4.9	5.3	3.5M	2.1	1.9	3.3	3.7	
MoME-23/4-FFN	12.7M	3.2	3.1	4.5	4.6	3.5M	2.1	2.2	4.0	4.0	
MoME-23/4-MHSA	12.7M	2.9	3.0	4.2	4.3	3.5M	1.8	1.7	2.9	2.9	
MoME-23/4-LAYER	12.7M	2.7	2.7	4.2	4.2	3.5M	1.5	1.8	3.1	3.2	
MoME-23/4-LAYER	2.3M	3.0	3.2	4.3	4.7	0.9M	2.0	2.2	3.2	3.7	

Results on LRS2 & LRS3 datasets.

Results across multiple compression rates.

MoME consistently outperforms the other baselines across all rates.

MHSA/LAYER configurations bring the best results.

Method	Active		LRS2	Dataset	t	Active LRS3 Data			Dataset	ıset	
	Params	(4,2)	(4,5)	(16,2)	(16,5)	Params	(4,2)	(4,5)	(16,2)	(16,5)	
Llama-AVSR [14] [‡]	27.5M	4.1	4.5	5.3	8.1	6.8M	2.4	2.8	3.3	4.1	
Llama-MTSK MS [23]	27.5M	4.8	5.9	6.4	8.9	8.1M	2.6	2.7	3.7	4.1	
Llama-MTSK SS [23]	27.5M	3.4	4.7	4.8	6.4	8.1M	2.3	2.2	3.3	3.6	
Llama-MTSK MSS [23]	55.0M	3.6	4.8	6.1	9.0	13.6M	2.4	2.4	3.2	3.5	
MoME-23/4-MHSA-I [‡]	12.7M	3.2	3.1	4.9	5.3	3.5M	2.1	1.9	3.3	3.7	
MoME-23/4-FFN	12.7M	3.2	3.1	4.5	4.6	3.5M	2.1	2.2	4.0	4.0	
MoME-23/4-MHSA	12.7M	2.9	3.0	4.2	4.3	3.5M	1.8	1.7	2.9	2.9	
MoME-23/4-LAYER	12.7M	2.7	2.7	4.2	4.2	3.5M	1.5	1.8	3.1	3.2	
MoME-23/4-LAYER	2.3M	3.0	3.2	4.3	4.7	0.9M	2.0	2.2	3.2	3.7	

Results on LRS2 & LRS3 datasets.

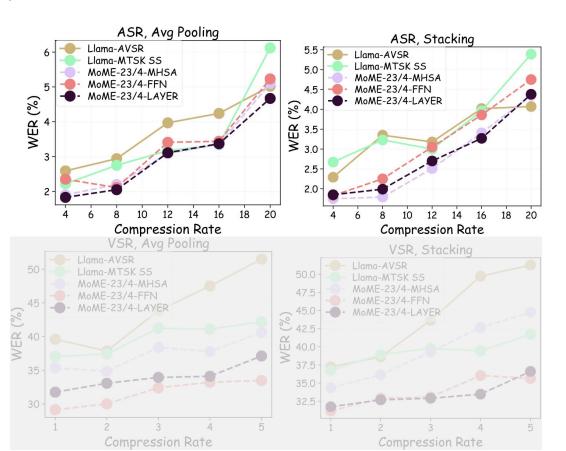
Results across multiple compression rates.

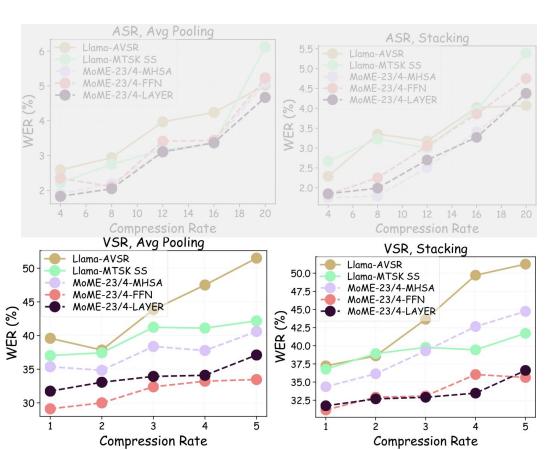
other baselines across all rates.

MoME consistently outperforms the

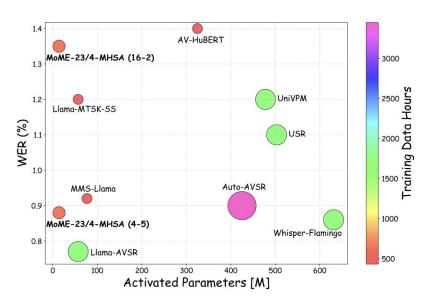
MHSA/LAYER configurations bring the best results.

We can push the active params down to 2.3/0.9M with minimal performance degradation, ensuring extreme parameter-efficient fine-tuning.



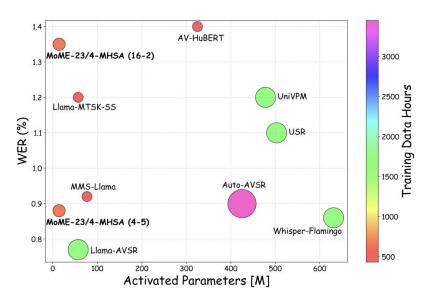


AVSR Comparison with SoTA Methods



When comparing MoME with SoTA AVSR methods, it achieves competitive results while activating significantly fewer parameters and requiring fewer training data hours.

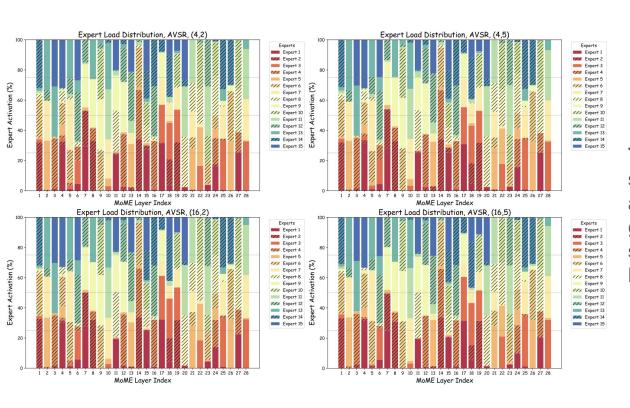
Robustness to Noise



Method	SNR (dB)								
-1-2-3-2-3	7.5	5	2.5	0	-5				
Llama-AVSR [14]	5.6	7.1	10.6	11.8	41.8				
			13.0						
MoME-23/4-LAYER	4.8	6.4	9.6	9.6	32.6				

MoME exhibits greater resilience to noise compared to prior methods, with particularly strong gains in highly degraded scenarios.

Expert Activation Analysis



Thanks to MoME, the same subset of experts tends to be activated across different token granularities, demonstrating strong alignment in routing behavior.

Further details and results can be found in our paper!

