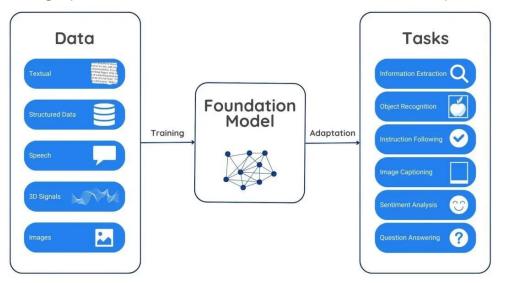
Parameter Efficient Fine-tuning via Explained Variance Adaptation

Fabian Paischer*, Lukas Hauzenberger*, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth, Sepp Hochreiter

Problem Statement

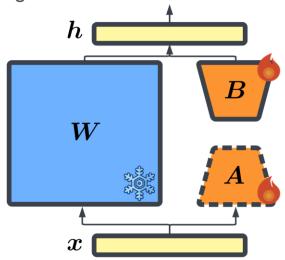
- Foundation Models [1] are trained on vast collections of data
 - Adaptation of large pre-trained models to downstream tasks is expensive!



Background - LoRA

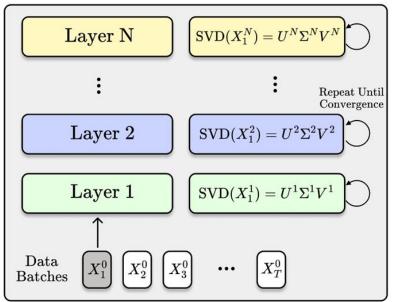
- LoRA (Hu et al., 2022) drastically reduces cost of finetuning
 - Introduce low rank weight matrices: W' = W + BA
 - Only fine-tunes newly introduced weights

- LoRA is usually initialized randomly with uniform ranks
 - O How to best initialize LoRA?
 - O How can we allocate ranks in task-driven manner?

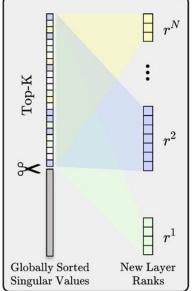


Explained Variance Adaptation (EVA)

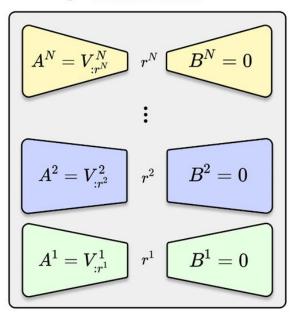
 $\begin{array}{c} \textbf{1} \quad \text{Layer-Wise} \\ \text{Incremental SVD} \end{array}$



Rank Redistribution



3 Lora Initialization



LoRA Initialization Strategies

Method	Initialization	Adaptive ranks
LoRA (Hu et al., 2022)	Random	X
AdaLoRA (Zhang et al., 2023a)	Random	✓
PiSSA (Meng et al., 2024)	Weight-driven	X
MiLoRA (Wang et al., 2024a)	Weight-driven	X
OLoRA (Büyükakyüz, 2024)	Weight-driven	X
LoRA-GA (Wang et al., 2024b)	Data-driven	X
CorDA (Yang et al., 2024)	Data-driven	X
EVA (Ours)	Data-driven	✓

Initialization stage - Incremental SVD

Initialization	Method	Memory (GB)	% of Training	
Waight-driven	PiSSA / MiLoRA	-	1.5	
Weight-driven	OLoRA	-	0.1	
	LoRA-GA _{bs=8}	56.95	2.4	
Data-driven	$CorDA_{bs=1}$	55.64	4.5	
Data-unven	$EVA_{bs=16}$	32.85	0.7	
	$EVA_{bs=8}$	29.39	0.3	
	$EVA_{bs=4}$	27.51	0.2	

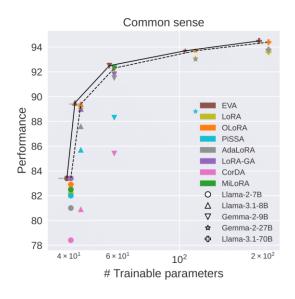
Initialization time for Llama-2-7b on Common Sense reasoning datasets on a single A100

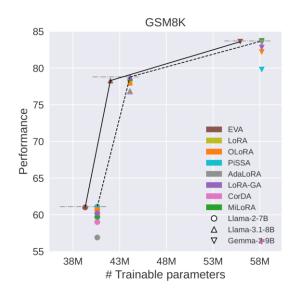
Experiments

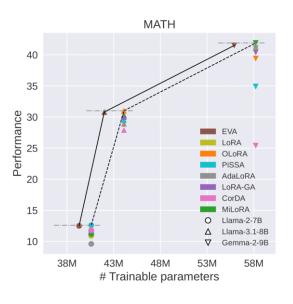
- 1. Math and common-sense reasoning tasks
 - a. Llama 2 7B
 - b. Llama 3.1 8B
 - c. Gemma 2 9B
 - d. Gemma 2 27B *
 - e. Llama 3.1 70B *
- 2. Language Understanding tasks
 - a. DeBERTa v3 Base (184M)
 - b. RoBERTa Large (355M)
- 3. Image classification
 - a. DINOv2-g/14 (1.1B)
- 4. Decision making
 - a. Decision Transformers (12M)

^{*} only common-sense reasoning

Results







Language Understanding

	Method	MNLI	QNLI	QQP	SST2	CoLA	MRPC	RTE	STS-B	Avg
RoBERTa Large	FFT	90.2	94.7	92.2	96.4	68.0	90.9	86.6	92.4	88.9
	LoRA	$90.7_{\pm .1}$	$94.8_{\pm.1}$	$92.0_{\pm .0}$	$96.2_{\pm .3}$	$69.1_{\pm .5}$	$91.1_{+.6}$	$88.1_{\pm 1.1}$	$92.3_{\pm.1}$	<u>89.3</u>
	AdaLoRA	$90.5_{\pm .1}$	$94.8_{\pm .2}$	$90.6_{\pm.1}$	$96.1_{\pm .2}$	$68.2_{\pm .7}$	$90.7_{\pm .6}$	$84.4_{\pm.9}$	$91.8_{\pm.1}$	88.4
	PiSSA	$90.1_{\pm .1}$	$94.7_{\pm .0}$	$91.0_{\pm .0}$	$96.1_{\pm .2}$	$68.7_{\pm 1.3}$	$90.4_{\pm .6}$	$87.6_{\pm .5}$	$92.5_{\pm .3}$	88.9
	OLoRA	$90.9_{\pm.1}$	$95.0_{\pm.1}$	$92.0_{\pm .2}$	$96.3_{\pm .3}$	$69.0_{\pm 1.5}$	$91.0_{\pm 1.0}$	$87.9_{\pm 1.2}$	$92.4_{\pm.1}$	<u>89.3</u>
	LoRA-GA	$90.8_{\pm .2}$	$94.9_{\pm.1}^{-}$	$92.0_{\pm.0}^{-}$	$96.3_{+.4}$	$68.4_{\pm 1.9}$	$91.0_{\pm .2}$	$87.0_{\pm .4}$	$92.3_{\pm .3}$	89.1
	CorDA	$89.3_{\pm .0}$	$92.6_{\pm.0}$	$89.7_{\pm .0}$	$95.5_{\pm .0}$	$67.8_{\pm 1.0}$	$90.1_{\pm .9}$	$86.5_{\pm .8}$	$91.8_{\pm .2}$	87.9
	EVA	$90.8_{\pm .1}$	$95.0_{\pm.2}$	$92.1_{\pm .1}$	$96.2_{\pm.1}$	$69.5_{\pm 1.4}$	$91.4_{\pm.8}$	$88.8_{\pm 1.2}$	$92.6_{\pm.1}$	89.6
	DoRA	$89.5_{\pm .1}$	$94.6_{\pm.1}$	$89.9_{\pm .1}$	$96.1_{\pm .1}$	$69.3_{\pm .8}$	$91.0_{\pm .6}^{-}$	$88.4_{\pm 1.2}$	$92.4_{\pm.1}$	88.9
DeBERTa v3 Base	FFT	90.1	94.0	92.4	95.6	69.2	89.5	83.8	91.6	88.3
	LoRA	$90.5_{\pm .1}$	$94.3_{\pm.1}$	$92.4_{+.1}$	$95.2_{\pm .3}$	$72.0_{\pm 1.3}$	$91.4_{\pm .7}$	$88.9_{\pm .5}$	$91.7_{\pm .1}$	89.6
	AdaLoRA	90.8	94.6	$92.\bar{2}$	96.1	71.5	90.7	88.1	91.8	89.5
	PiSSA	$90.1_{\pm .3}$	$94.1_{\pm.1}$	$91.8_{\pm.1}$	$95.8_{\pm.1}$	$72.7_{\pm 1.7}$	$90.9_{\pm .6}$	$86.5_{\pm 1.2}$	$91.6_{\pm .2}$	89.2
	OLoRA	$90.5_{\pm .1}$	$94.4_{\pm.1}$	$92.6_{\pm.1}$	$\mathbf{96.2_{\pm .2}}$	$72.0_{\pm 1.0}$	$91.6_{\pm .7}$	$89.1_{\pm.9}$	$92.0_{\pm.2}$	<u>89.8</u>
	LoRA-GA	$89.8_{\pm .7}$	${f 94.6}_{\pm.1}$	$92.2_{\pm.0}$	$95.6_{\pm .8}$	$72.2_{\pm .9}$	$90.8_{\pm .9}$	$86.6_{\pm 1.1}$	$90.5_{\pm .6}$	89.0
	CorDA	$90.0_{\pm.1}$	$93.8_{\pm.1}$	$91.1_{\pm .1}$	$95.5_{\pm .4}$	$71.8_{\pm 1.2}$	$89.6_{\pm .5}$	$83.9_{\pm .3}$	$91.1_{\pm .2}$	88.3
	EVA	$90.6_{\pm .1}$	$94.4_{\pm.1}$	$92.4_{\pm .0}$	$96.2_{\pm.2}$	$\frac{72.5}{1.3}$	$91.8_{\pm .6}$	$89.4_{\pm.7}$	$92.0_{\pm.2}$	89.9
	DoRA	$89.0_{\pm .2}$	$94.1_{\pm .1}$	$88.0_{\pm.1}$	$94.6_{\pm .4}$	$70.3_{\pm.5}$	$91.9_{\pm .6}^-$	$87.8_{\pm .7}$	$91.8_{\pm.1}$	88.4

Try out EVA

```
from peft import EvaConfig, LoraConfig, get_peft_model, initialize_lora_eva_weights
eva_config = EvaConfig(
    rho=rho
peft_config = LoraConfig(
    init_lora_weights="eva",
   eva_config=eva_config
peft_model = get_peft_model(model, peft_config, low_cpu_mem_usage=True)
initialize_lora_eva_weights(peft_model, dataloader)
```


Conclusion

- EVA leverages downstream data to initialize low rank weights and adaptively allocates ranks
- EVA reaches highest average score with less trainable parameters on
 - Language generation
 - Language understanding
 - Image classification
 - Decision making

References

- [1] On the Opportunities and Risks of Foundation Models, Bommasani et al., 2021
- [2] LoRA: Low-Rank Adaptation of Large Language Models, Hu et al., ICLR 2022
- [3] Llama 2: Open Foundation and Fine-Tuned Chat Models, Touvron et al., arXiv:2307.09288
- [4] The Llama 3 Herd of Mdoels, Llama Team, Al @ Meta, arXiv:2407.21783
- [5] Gemma 2: Improving Open Language Models at a Practical Size, Gemma Team, arXiv:2408.00118
- [6] DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing, He et al., ICLR 2023
- [7] RoBERTa: A Robustly Optimized BERT Pretraining Approach, Liu et al., arXiv:1907.11692
- [8] DINOv2: Learning Robust Visual Features without Supervision, Oquab et al., TMLR 2024
- [9] Decision Transformer: Reinforcement Learning via Sequence Modeling, Chen et al., NeurIPS 2021
- [10] DoRA: Weight-Decomposed Low-Rank Adaptation, Liu et al., ICML 2024
- [11] Training Verifiers to Solve Math Word Problems, Cobbe et al., arXiv:2110.14168
- [12] Measuring Mathematical Problem Solving With the MATH Dataset, Hendrycks et al., NeurIPS 2021
- [13] GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding, Wang et al., ICLR 2019
- [14] MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models, Yu et al., ICLR 2024

