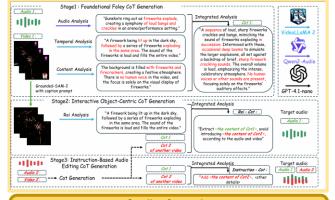


Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing

Introduction

The Problem:

End-to-end V2A models often lack nuance and precise temporal synchronization. This is because they fail to perform sophisticated reasoning about visual dynamics and temporal relationships.



Interactive Step-by-step Generation and Editing

The Motivation: Using CoT as a Solution

To address this gap, we use Chain-of-Thought (CoT) reasoning to decompose the complex task into manageable, stepwise instructions, enabling models to reason like human sound designers for more coherent, controllable audio generation and precise editing.

Dataset: AudioCoT

Quality Control:

- ◆ Audio-text alignment (CLAP)
 ◆ Object tracking consistency
 - Human verification

● Stage 1 Foundational Foley CoT:

Generates CoT reasoning chains by integrating video (via VideoLLaMA2) and audio (via Qwen2-Audio) information using GPT-4.1-nano.

- Stage 2 Interactive Object-Centric CoT: Uses Grounded SAM2 to identify sound-emitting objects (ROIs) and GPT-4.1-nano to create CoT for object-specific audio manipulations.
- Stage 3 Instruction-Based
 Editing CoT: Focuses on editing operations (e.g., inpainting, addition).

Experiments

Table 1: Comparison of our ThinkSound foundation model with existing video-to-audio baselines on the VGGSound test set. \$\pm\$ indicates lower is better, \$\pm\$ indicates higher is better. For MOS, we show the mean and variance of the MOS scores. \$\pm\$ indicates that the method does **not use text** for inference.

Method	Objective Metrics						Subjective Metrics		Efficiency	
	FD↓	$KL_{PaSST}\downarrow$	$KL_{PaNNs}\downarrow$	DeSync↓	CLAP _{cap} ↑	$CLAP_{CoT} \uparrow$	MOS-Q↑	MOS-A↑	Params	Time(s)↓
GT	- I	-	-	0.55	0.28	0.45	4.37±0.21	4.56±0.19	-	-
See&Hear	118.95	2.26	2.30	1.20	0.32	0.35	2.75±1.08	2.87 ± 0.99	415M	19.42
V-AURA†	46.99	2.23	1.83	0.65	0.23	0.37	3.42±1.03	3.20 ± 1.17	695M	14.00
FoleyCrafter	39.15	2.06	1.89	1.21	0.41	0.34	3.08±1.21	2.63 ± 0.88	1.20B	3.84
Frieren [†]	74.96	2.55	2.64	1.00	0.37	0.34	3.27±1.11	2.95 ± 1.09	159M	
V2A-Mapper†	48.10	2.50	2.34	1.23	0.38	0.32	3.31±1.02	3.16 ± 1.04	229M	
MMAudio	43.26	1.65	1.40	0.44	0.31	0.40	3.84±0.89	3.97 ± 0.82	1.03B	3.01
ThinkSound	34.56	1.52	1.32	0.46	0.33	0.46	4.02±0.73	4.18±0.79	1.30B	1.07
w/o CoT Reasonir	ng 39.84	1.59	1.40	0.48	0.29	0.41	3.91±0.83	4.04±0.75	1.30B	0.98

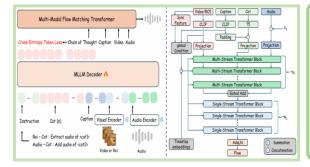
Table 2: Out-of-distribution evaluation on MovieGen Audio Bench. This benchmark does not provide the GT audios, so we cannot compare FD and KL.

JI au	ThinkSound w/o CoT	43.27 45.28	1.32 1.34	0.48	3.89±0.52 3.77±0.64				
		. MOS-Q↑	MOS-A↑	Table 4: Au set (MOS-A DDPM: DD	A: alig	nment be			
.45	0.77	3.95±0.87		Method	FD↓	$KL_{PaSST}\downarrow$	CLAP	MOS-Q↑	_
.47	1.00	3.98±0.77	3.70±0.96	AudioLDM-2 DDPM	61.28	1.94		3.28±0.59 3.34±0.28	
.51	0.76	4.11 ± 0.74	3.87 ± 0.82		34.78	1.45		3.92±0.82	_

Quantitative Results

CLAF

Method


MMAudio

MovieGen

ThinkSound |

- ThinkSound achieves **state-of-the-art** video-to-audio generation, surpassing all baselines on VGGSound (FD 34.56 ↓, MOS-Q 4.02 ↑).
- CoT reasoning notably enhances temporal and semantic alignment (CLAP 0.46 vs 0.41 w/o CoT).
- Demonstrates strong generalization on MovieGen Audio Bench (CLAP 0.51, MOS-Q 4.11).
- Object-focused generation shows excellent control (MOS-A 3.91).
- Instruction-based editing outperforms AudioLDM-2 / DDPM baselines (FD 34.78, CLAP 0.51).

Method: ThinkSound

● CoT Reasoning MLLM: This component uses fine-tuned VideoLLaMA2 as its core reasoning engine. It understands complex audio-visual contexts, inferring acoustic properties and temporal relationships. It then decomposes complex tasks and interprets diverse user instructions, outputting them as structured CoT instructions.

We propose **ThinkSound**, a framework enabling step-by-step, interactive audio generation and editing guided by CoT reasoning.

Our three-stage pipeline decomposes the task into:

- Stage 1 CoT-Guided Foley Generation: synthesizing semantically and temporally matched soundscapes.
- Stage 2 Interactive Object-Focused Audio Generation: refining sounds through user clicks on specific visual objects.
- Stage 3 Instruction-Based Audio Editing: applying highlevel, natural-language instructions for targeted modifications.

CoT-Guided Unified Audio Foundation Model: This component translates the MILM's CoT reasoning into

This component translates the MLLM's CoT reasoning into high-quality audio using conditional flow matching. It employs a dual-path text encoding strategy: MetaCLIP encodes scene-level context, while T5 processes the structured CoT for fine-grained control.

Scan for Demos

Table 3: Object-focused generation performance

Method | FD⊥ KLp.ccr ⊥ CLAP↑ | MOS-O↑ MOS-A↑

- Project Page: https://thinksound-project.github.io/
- Contact Us: huadai.liu@connect.ust.hk