

From stability of Langevin diffusion to convergence of proximal MCMC for non-log-concave sampling

Marien Renaud ^{1,3} Valentin de Bortoli ² Arthur Leclaire ³ Nicolas Papadakis ¹

¹Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France ²ENS, CNRS, PSL University, Paris, 75005, FRANCE ³LTCI, Télécom Paris, IP Paris, France

Overview

Objective: Sampling a distribution $\pi \propto e^{-V}$, with V non convex.

Langevin. We ise the Unajusted Langevin Algorithm (ULA) MCMC to sample π , defined by

$$X_{k+1} = X_k - \gamma \nabla V(X_k) + \sqrt{2\gamma} Z_{k+1} \tag{1}$$

with $\gamma > 0$ the stepsize and $Z_{k+1} \sim \mathcal{N}(0, I_d)$. In practice, ∇V is approximated by $b \approx \nabla V$, leading to the inexact ULA defined by

$$X_{k+1} = X_k - \gamma b(X_k) + \sqrt{2\gamma} Z_{k+1}$$

Composite potential V = f + g. Many problem, e.g. inverse problem in imaging, involves a composite potential V = f + g with two non convex functions f, g and a non smooth function g.

ULA cannot be applied. Instead we rely on the Proximal Stochastic Gradient Langevin Algorithm (PSGLA)

$$X_{k+1} = \mathsf{Prox}_{\gamma g} \left(X_k - \gamma \nabla f(X_k) + \sqrt{2\gamma} Z_{k+1} \right), \tag{2}$$

with the proximal operator defined by $\operatorname{Prox}_{\gamma g}(x) = \arg\min_{y \in \mathbb{R}^d} \frac{1}{2\gamma} ||x - y||^2 + g(y)$.

Contributions

- ullet New stability result in b for iULA algorithm and bound on the discretization error
- First non convex proof of convergence for PSGLA
- Practical gain of PSGLA in realistic scenario of inverse problem in imaging

Definitions

• The p-Wasserstein distance between μ and ν is defined, for $p \geq 1$, by

$$\mathbf{W}_p(\mu,\nu) = \left(\min_{\beta \in \Pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} ||x - y||^p d\beta(x,y)\right)^{\frac{1}{p}},\tag{3}$$

with Π the set of probability law β on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and ν .

- g is ρ -weakly convex, with $\rho > 0$, if and only if $g + \frac{\rho}{2} \|\cdot\|^2$ is convex.
- • $(X_k)_{k\geq 0}$ has an invariant law if there exists μ such that if $X_0 \sim \mu$, then $\forall k \geq 0$, $X_k \sim \mu$.
- $(X_k)_{k\geq 0}$ is geometrically ergodic, if the law of X_k converges geometrically to the invariant law, i.e. there exist $A\geq 0$, $\rho\in(0,1)$, an invariant law μ , such that $\mathbf{W}_1(p_{X_k},\mu)\leq A\rho^k$ with p_{X_k} the law of X_k .

Stability of Langevin diffusion

For two iULA with two drifts defined for $i \in \{1, 2\}$ by

$$X_{k+1}^{i} = X_{k}^{i} - \gamma b^{i}(X_{k}^{i}) + \sqrt{2\gamma} Z_{k+1}^{i}, \tag{4}$$

Assumption 1: There exist $L, R \ge 0$ and m > 0 such that the drift b verifies (i) b is L-Lipschitz, i.e. $\forall x, y \in \mathbb{R}^d$, $||b(x) - b(y)|| \le L||x - y||$ (ii) $\forall x, y \in \mathbb{R}^d$ such that $||x - y|| \ge R$, we have $\langle b(x) - b(y), x - y \rangle \ge m||x - y||^2$.

Theorem: If b^1, b^2 satisfy Assumption 1. X_k^1, X_k^2 are two geometrically ergodic Markov Chains with invariant laws $\pi_{\gamma}^1, \pi_{\gamma}^2$. Then for $\gamma_0 = \frac{m}{L^2}$ and $p \in \mathbb{N}^*$ there exist $C_p, C \geq 0$ such that $\forall \gamma \in (0, \gamma_0]$, we have

$$\mathbf{W}_{p}(\pi_{\gamma}^{1}, \pi_{\gamma}^{2}) \leq C_{p} \|b^{1} - b^{2}\|_{\ell_{2}(\pi_{\gamma}^{1})}^{\frac{1}{p}}, \tag{5}$$

$$\|\pi_{\gamma}^{1} - \pi_{\gamma}^{2}\|_{TV} \le C\|b^{1} - b^{2}\|_{\ell_{2}(\pi_{\gamma}^{1})}. \tag{6}$$

Corollary: If $b, \nabla V$ verify Assumption 1. Then for $\gamma_0 = \frac{m}{L^2}$, and $\gamma \in (0, \gamma_0]$, the Markov Chain (1) is geometrically ergodic with an invariant law $\hat{\pi}_{\gamma}$. Moreover for $p \in \mathbb{N}^*$, there exist $C_p, D_p, C, D \geq 0$ such that $\forall \gamma \in (0, \gamma_0]$, we have

$$\mathbf{W}_{p}(\hat{\pi}_{\gamma}, \pi) \leq C_{p} \|b - \nabla V\|_{\ell_{2}(\hat{\pi}_{\gamma})}^{\frac{1}{p}} + D_{p} \gamma^{\frac{1}{2p}} \|\hat{\pi}_{\gamma} - \pi\|_{TV} \leq C \|b - \nabla V\|_{\ell_{2}(\hat{\pi}_{\gamma})} + D\gamma^{\frac{1}{2}}.$$

Convergence of PSGLA

Question: Does PSGLA converge in non-convex setting?

Assumption 2: The potential V is composite, i.e. V = f + g where (i) f is L_f -smooth, i.e. ∇f is L_f -Lipschitz. (ii) g is ρ -weakly convex. PSGLA (2) can be reformulated as a two points algorithm

$$Y_{k+1} = X_k - \gamma \nabla f(X_k) + \sqrt{2\gamma} Z_{k+1}$$
$$X_{k+1} = \operatorname{Prox}_{\gamma q} (Y_{k+1}).$$

Under Assumption 2, we get that the iterates Y_k verify the equation

$$\begin{split} Y_{k+1} &= \mathsf{Prox}_{\gamma g}\left(Y_{k}\right) - \gamma \nabla f(\mathsf{Prox}_{\gamma g}\left(Y_{k}\right)) + \sqrt{2\gamma}Z_{k+1} \\ &= Y_{k} - \gamma b^{\gamma}(Y_{k}) + \sqrt{2\gamma}Z_{k+1}, \end{split}$$

where the drift b^{γ} is defined for $y \in \mathbb{R}^d$ as

$$b^{\gamma}(y) = \nabla f(y - \gamma \nabla g^{\gamma}(y)) + \nabla g^{\gamma}(y).$$

Assumption 3: (i) $\forall \gamma \in (0, \frac{1}{\rho})$, g is L_g -smooth on $\operatorname{Prox}_{\gamma g}\left(\mathbb{R}^d\right)$. (ii) g^{γ} is μ -strongly convex at infinity with $\mu \geq 8L_f + 4L_g$, i.e. there exists $\gamma_1 > 0$ and $R_0 \geq 0$ such that $\forall \gamma \in (0, \gamma_1], \nabla^2 g^{\gamma} \succeq \mu I_d$, on $\mathbb{R}^d \setminus B(0, R_0)$.

Theorem of convergence of PSGLA

Under Assumptions 2-3, there exist $r \in (0,1)$, $C_1, C_2 \in \mathbb{R}_+$ such that $\forall \gamma \in (0,\bar{\gamma}]$, with $\bar{\gamma} = \min\left(\frac{1}{2L_g}, \frac{\mu}{32(L_f + L_g)^2}, \frac{1}{2\rho}, \gamma_1\right)$, where L_g, L_f, ρ, γ_1 are defined in Assumptions 2-3, and $\forall k \in \mathbb{N}$, we have

$$\mathbf{W}_p(p_{X_k}, \nu_{\gamma}) \le C_1 r^{k\gamma} + C_2 \gamma^{\frac{1}{2p}},\tag{7}$$

with p_{X_k} the distribution of Y_k and $\nu_{\gamma} \propto \mathsf{Prox}_{\gamma q} \# e^{-f-g^{\gamma}}$.

Experiments

PnP-PSGLA: approximation of the Proximal operator by a pretrained Gaussian denoiser

$$X_{k+1} = D_{\sqrt{\gamma}} \left(X_k - \frac{\gamma}{\lambda} \nabla f(X_k) + \sqrt{2\gamma} Z_{k+1} \right).$$

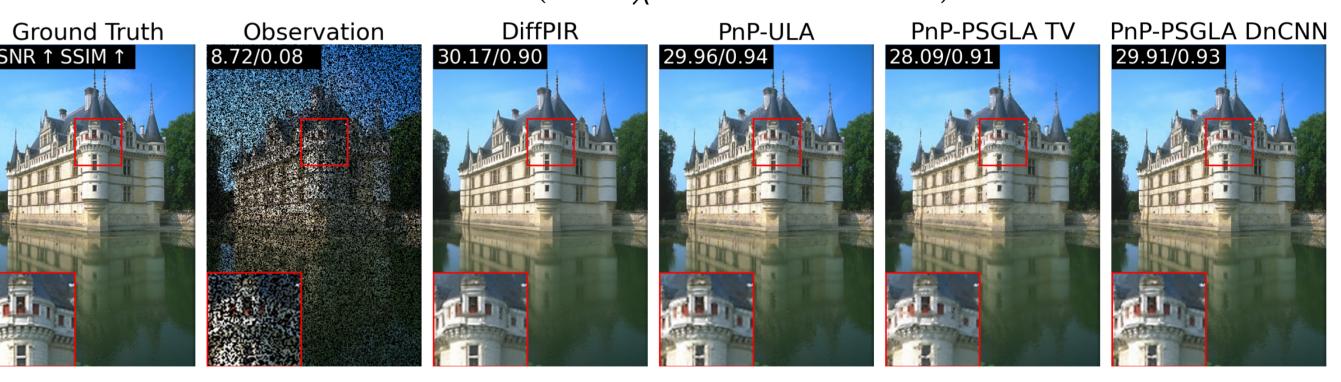


Figure 1. Qualitative result for image inpainting with 50% masked pixels and a noise level of $\sigma = 1/255$. PnP-ULA is run with 1,000,000 iterations and PSGLA with 10,000 iterations.

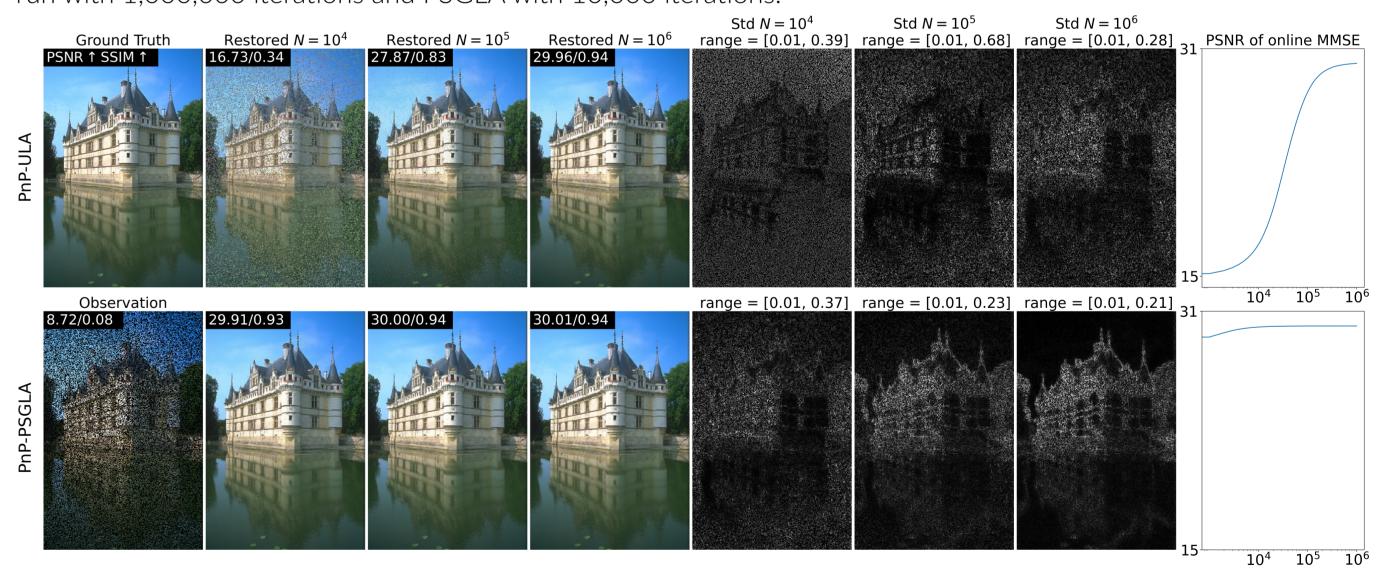


Figure 2. PnP-ULA and PnP-PSGLA with various N.

Algorithm	Denoiser	PSNR↑	SSIM ↑	LPIPS↓	$N\downarrow$	time (s)↓	convergent
DiffPIR	GSDRUNet	29.99	0.88	0.06	20	1	X
RED	DnCNN	30.49	0.89	0.06	<u>500</u>	<u>6</u>	√
RED	GSDRUNet	29.26	0.88	0.12	<u>500</u>	20	√
PnP	DnCNN	30.50	0.91	0.06	<u>500</u>	<u>6</u>	√
PnP	GSDRUNet	<u>30.52</u>	0.92	0.07	<u>500</u>	20	√
PnP-ULA	DnCNN	27.89	0.82	0.12	100,000	1,200	√
PnP-PSGLA	TV	29.24	0.89	0.08	1,000	25	√
PnP-PSGLA	DnCNN	30.81	0.92	0.05	10,000	120	✓

Table 1. Quantitative results for image inpainting with 50% masked pixels on CBSD68 dataset.