

SolverLLM: Leveraging Test-Time Scaling for Optimization Problem via LLM-Guided Search

Dong Li¹, Xujiang Zhao², Linlin Yu³, Yanchi Li², Wei Cheng², Zhengzhang Chen², Zhong Chen⁴, Feng Chen⁵, Chen Zhao¹, Haifeng Chen²

¹Baylor University, ²NEC Labs America, ³Augusta University, ⁴Southern Illinois University, ⁵University of Texas at Dallas

Solving the Optimization Problem

Natural Language Description

A new fast food place makes wraps and platters. Each wrap requires 5 units of meat and 3 units of rice. Each platter requires 7 units of meant and 5 units of rice. While each wrap takes 10 minutes to make, each platter takes 8 minutes to make. The fast food place must use at least 3000 units of meat and 2500 units of rice. Since wraps are easier to eat on the go, at least 3 times as many wraps need to be made as platter. How many of each should the fast food place make to minimize the total production time?.

Requires domain and mathematical expertise.

1. Problem Formulation

Translate the natural language problem description into a mathematical model

Mathematical Model

Problem Type: Integer Linear Programming **Decision Variables:**

x = number of wraps, y = number of platters

Objective:

min 10x + 8y (total production time in minutes)

Constraints:

 $5x + 7y \ge 3000$ (meat constraint) $3x + 5y \ge 2500$ (rice constraint) $x \ge 3y$ (wrap to platter ratio) $x, y \in \mathbb{Z}^+$ (non-negative integers)

Reliable with wellestablished solvers

3. Program Execution

Run the code with optimization solvers

Optimal Solution

Optimal solution found Optimal number of Wraps: 537.0 Optimal number of Platters: 178.0 Minimum Production Time: 6794.0

Define variables (x = wraps, y = platters) = model.addVar(vtype=GRB.INTEGER, name="wraps") model.addVar(vtype=GRB.INTEGER, name="platters")

 \sharp Set objective: minimize total production time model.setObjective(10 * x + 8 * y, GRB.MINIMIZE)

model.addConstr(5 * x + 7 * v >= 3000, "meat constraint") model.addConstr(3 * x + 5 * y >= 2500, "rice_constraint",
model.addConstr(x >= 3 * y, "wrap_ratio_constraint")

print(f*Optimal number of wraps: (x.X)")
print(f*Optimal number of platters: (y.X)")
print(f*Minimum total production time: (model.ObjVal)")

model = Model ("wraps and platters")

model.status == GRB.OPTIMAL:

print("No optimal solution found.")

Convert the

2. Code Generation

mathematical model into executable code

Requires **programming** expertise.

4. Evaluation

Through the execution result (solution or any error message), refine the previous step

Without ground truth, we can only check **Feasibility** but no Optimality

*.....

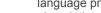
Currently, 90% of users of this tool hold a PhD degree.

Automating Optimization Problem Solving

Natural Language Description

A new fast food place makes wraps and platters. Each wrap requires 5 units of meat and 3 units of rice. Each platter requires 7 units of meant and 5 units of rice. While each wrap takes 10 minutes to make, each platter takes 8 minutes to make. The fast food place must use at least 3000 units of meat and 2500 units of rice. Since wraps are easier to eat on the go, at least 3 times as many wraps need to be made as platter. How many of each should the fast food place make to minimize the total production time?.

Requires domain and mathematical expertise.



Translate the natural language problem description into a mathematical model

1. Problem Formulation

Mathematical Model

Problem Type: Integer Linear Programming

Challenging but Fruitful

(G)

Decision Variables: x = number of wraps, y = number of platters Objective: min 10x + 8y (total production time in minutes) Constraints: $5x + 7y \ge 3000$ (meat constraint) $3x + 5y \ge 2500$ (rice constraint) $x \ge 3y$ (wrap to platter ratio) $x, y \in \mathbb{Z}^+$ (non-negative integers) Reliable with wellestablished solvers

3. Program Execution

Run the code with

optimization solvers

Optimal Solution

Optimal solution found Optimal number of Wraps: 537.0 Optimal number of Platters: 178.0 Minimum Production Time: 6794.0

4. Evaluation

Solution: compound Al system

Through the execution result (solution or any error message), refine the previous step

Without ground truth, we can only check **Feasibility** but no Optimality

Not ideal, but the only option

2. Code Generation

Convert the mathematical model into executable code

model.addVar(vtype=GRB.INTEGER, name="platters") # Set objective: minimize total production time model.setObjective(10 * x + 8 * y, GRB.MINIMIZE) model.addConstr(5 * x + 7 * v >= 3000, "meat constraint") model.addConstr(3 * x + 5 * y >= 2500, "rice_constraint" model.addConstr(x >= 3 * y, "wrap_ratio_constraint")

model.status == GRB.OPTIMAL: print(f"Optimal number of wraps: (x.X)")
print(f"Optimal number of platters: (y.X)")

Executable Code

Define variables (x = wraps, y = platters) = model.addVar(vtype=GRB.INTEGER, name="wraps")

from gurobipy import Model, GRB

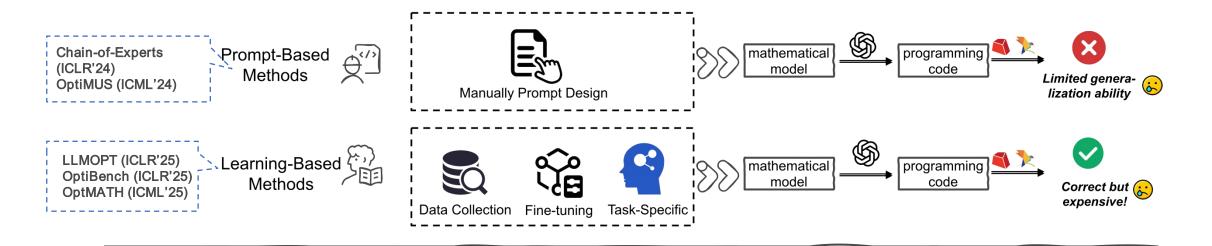
model = Model ("wraps and platters")

Requires **programming** expertise. Currently, 90% of users of this tool hold a PhD degree.

Practical and low-risk

Compound AI: Language Understanding + Reliable Logic Solution

Compound Al System Design (Literature)



Prompt-Based Methods

- Coordinate specialized agents under a carefully designed workflow.
- But? Sensitive to prompt choice, making them fragile on unfamiliar optimization tasks.

Learning-Based Methods

- Fine-tune a general LLM on curated problem—solution pairs.
- But? Effectiveness depends on significant dataset labeling and model fine-tuning cost

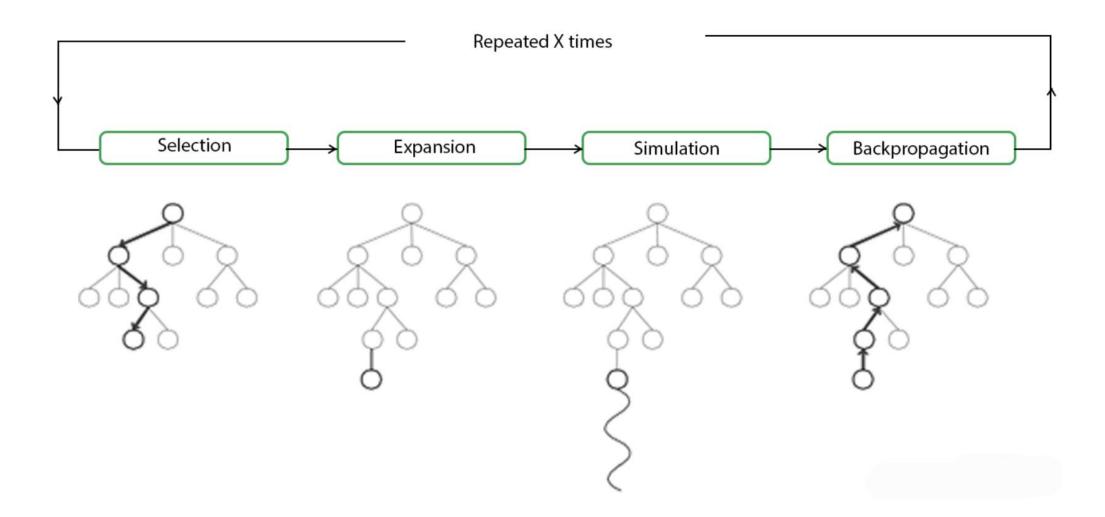
Automated optimization problem solving is an active research area

Compound Al System Design: Test Time Scaling (TTS)



TTS is promising, but efficiency and reasoning is critical

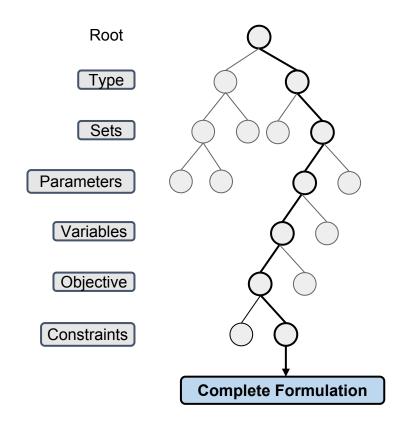
Monte Carlo Tree Search (MCTS)



Six-element Schema Formulation for Optimization Problem

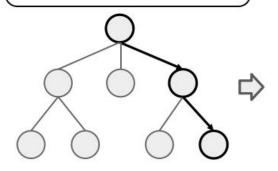
Search Tree

- Starting from the root, each level corresponds to an element and is associated with a local expert-guided knowledge base, yielding a tree of depth seven.
- ➤ Each node maintains its visit count, accumulated reward, and a trigger that indicates whether it is active.



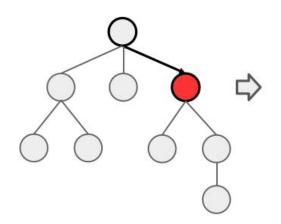
Selection

Select until reaching a leaf (upper) / active (lower) node



Expansion on leaf node

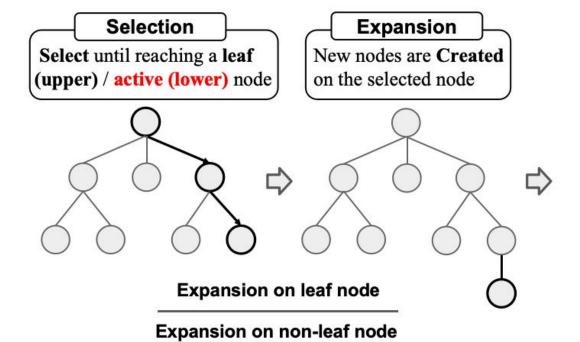
Expansion on non-leaf node

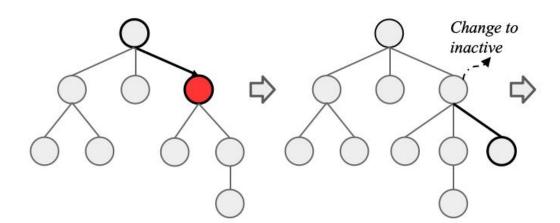


Selection

- ☐ Starting from the root node, nodes are selected sequentially downward until a leaf or an active non-leaf node is reached.
- ☐ The selection is guided by the Upper Confidence Bound for Trees (UCT). Given a parent node s, the next child $s_{child} \in Child(s)$ is selected according to:

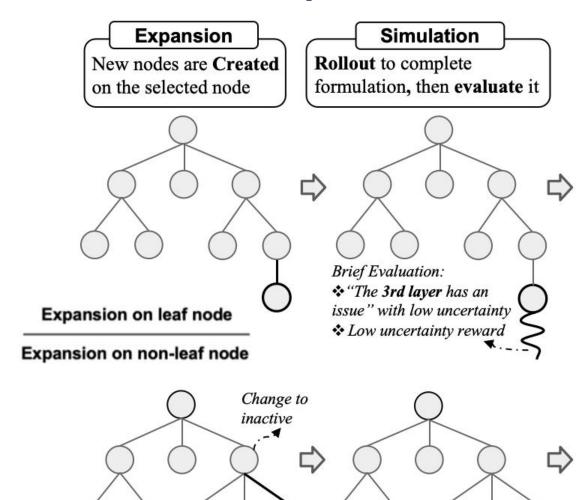
$$s_{child} = \arg\max_{s' \in \text{Child}(s)} \left[Q_{s'} + c \sqrt{\frac{2 \log N_s}{N_{s'}}}\right] \xrightarrow{\text{exploration}} \text{factor}$$





Dynamic Expansion

- ☐ Expand a new node to the selected leaf or active non-leaf node.
- ☐ LLM-guided expansion with local expert-guided knowledge base.

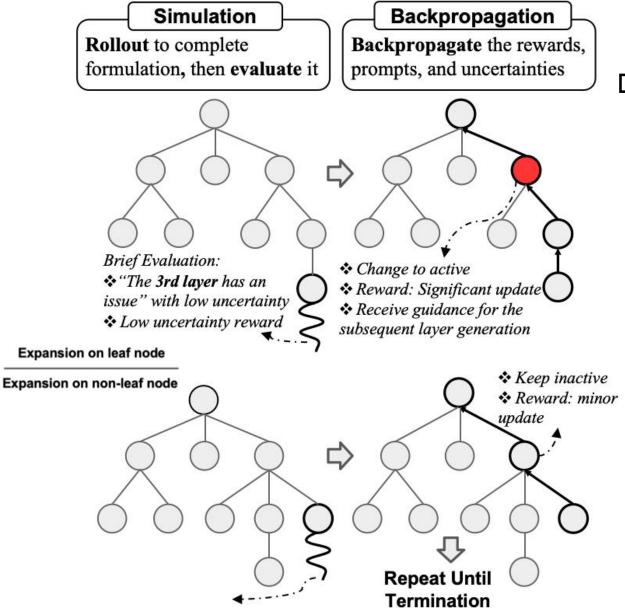


Brief Evaluation:

"The 3rd layer has a new issue" with high uncertainty
High uncertainty reward

Simulation

- ☐ Expand continues on expanded node until a complete formulation is obtained, after which alignment and evaluation are performed to yield the following signals:
 - ☐ A reward capturing the factors of feasibility, optimality, and error penalty.
 - ☐ Layer-wise reasoning feedback, which integrates an activation trigger, reasoning guidance, and selection rationale to inform subsequent search and refinement.



Backpropagation

- ☐ Extend standard MCTS with prompt backpropagation and uncertainty propagation to update the search tree and inform future decisions.
 - ☐ Prompt Backpropagation: The layer-wise reasoning feedback signals are propagated back to each layer, where the local uncertainty is computed via predictive entropy derived from the selection rationale.
 - ☐ Uncertainty Backpropagation: The semantic uncertainty at each evaluated node is estimated as the global uncertainty, which is then used to update each node's reward through an uncertainty-weighted averaging scheme.

Comparison of Solving Accuracy (SA) Among Different Types

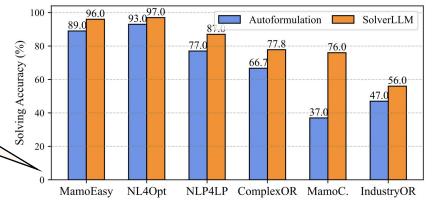
of Methods

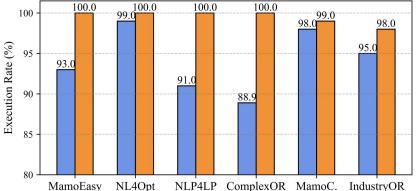
Prompt-Based methods

	NL4Opt	NLP4LP	ComplexOR
GPT-4 Directly	47.3%	35.8%	9.5%
GPT-40 Directly	81.0%	32.4%	27.3%
Reflexion	53.0%	46.3%	19.1%
Chain-of-Experts	64.2%	53.1%	38.1%
OptiMUS	78.8%	<u>72.0%</u>	<u>66.7%</u>
SolverLLM (Ours)	97.0%	87.0%	77.8%

Learning-Based methods

	MamoEasy	NL4Opt	MamoComplex	IndustryOR
GPT-4 Directly GPT-4o Directly	66.5%	47.3% 81.0%	14.6% 34.0%	28.0% 34.0%
ORLM-Mistral	81.4%	84.4%	32.0%	27.0%
ORLM-Deepseek	82.2%	86.5%	37.9%	33.0%
ORLM-LLaMa3 LLMOPT	82.3% 97.0 %	85.7% 93.0%	37.4% 68.0%	38.0% 46.0%
SolverLLM (Ours)		97.0%	76.0%	56.0%
Solver LLM (Ours)	90.0%	91.0%	70.0%	30.0%





Thanks for Your Wathcing!