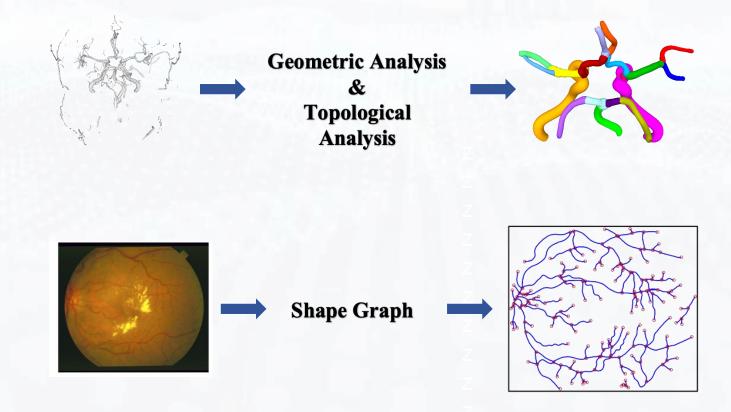


Topology-Aware Learning of Tubular Manifolds via SE(3)-Equivariant Network on Ball B-Spline Curve

Jingxuan Wang¹, Zhongke Wu¹, Xingce Wang¹, Zeyao Zhang¹, Chunhao Zheng¹, Di Wang²

¹ School of Artificial Intelligence, Beijing Normal University, China;

² LILY Research Centre, Nanyang Technological University, Singapore


Background of Tubular Structure Analysis

- Medical image processing (2D & 3D images)
 - Local geometric feature analysis (arc length, normal, curvature)
 - Topological relationship analysis

Challenge & Motivation

Voxel

- Data discretization (Pixels, voxels, point clouds, meshes)
 - Loss of local geometric details
 - High-precision geometric features require large scale,
 high-resolution data

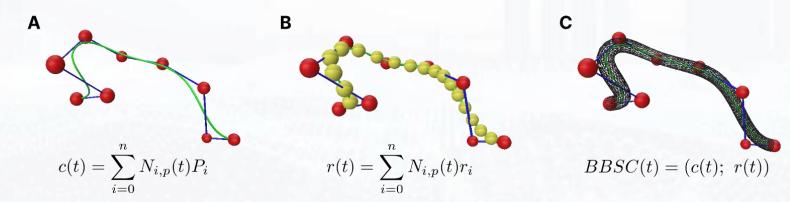
Mesh

Point cloud

- Parameterized manifolds
 - Continuously and differentiable,
 allowing for the determination of precise
 geometric properties
 - Low storage and computing costs
 - Rigorous theoretical analysis can be performed

Ball B-Spline Curve

Ball B-Spline Curve



Ball B-Spline Curve (BBSC)

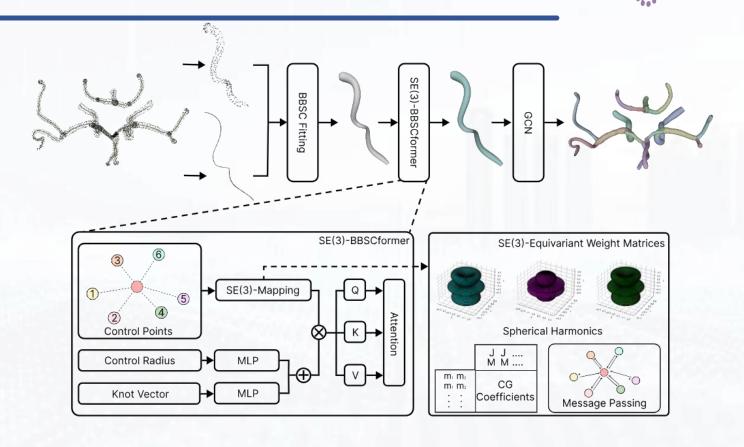
$$BBSC(t) = \sum_{i=0}^{n} N_{i,p}(t)C_i = \sum_{i=0}^{n} N_{i,p}(t) (P_i \; ; \; r_i) = \left(\sum_{i=0}^{n} N_{i,p}(t)P_i \; ; \; \sum_{i=0}^{n} N_{i,p}(t)r_i\right)$$
 (Abbreviated as β)

A smooth tubular surface, which can be viewed as a 2D manifold coordinated by u and v.

Ball B-Spline Curve functional space

$$\mathcal{M}_p = \{ \beta(P, r, \tau) \mid (P, r, \tau) \in \Theta \}, \quad \Theta = \{ P \in \mathbb{R}^{3 \times n}, \ r \in \mathbb{R}_{>0}, \ \tau \in \mathbb{T} \}$$

Ball B-Spline Curve topological structure

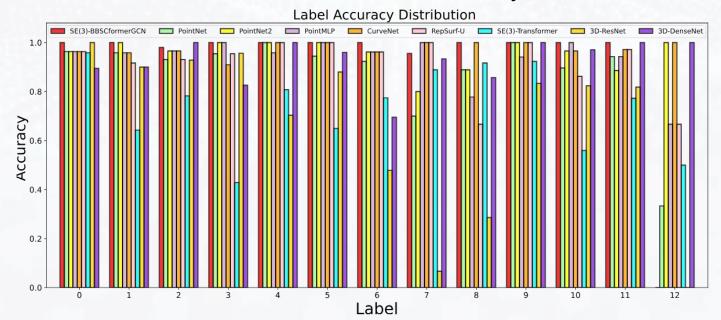

$$\mathcal{GM} = \left(\bigsqcup_{i \in I} \beta_i\right) / \sim, \, \sim \subseteq \bigsqcup_{i \in I} \beta_i \times \bigsqcup_{i \in I} \beta_i$$

SE(3)-BBSCformerGCN

- BBSC fitting
 - Input: surface point, centerline
 - Output: control parameters, knot vectors (Fitting scattered data points with ball b-spline curves using particle swarm optimization)
- SE(3)-BBSCformer
 - Input: $f_{in}^{c_{i_0}} = (MLP(r), MLP(\tilde{\tau})), \ \tilde{\tau} = ((t_1, \dots, t_{p+1}), \dots, (t_n, \dots, t_{n+p+1}) \in \mathbb{R}^{n \times (p+1)}$
 - Output: $\vec{q}_i = \bigoplus_{c_o} \sum_{c_i} W_Q^{c_o c_i} f_{in,i}^{c_i}, \ \vec{k}_j = \bigoplus_{c_o} \sum_{c_i} W_K^{c_o c_i} (P_j \overline{P}) f_{in,j}^{c_i}, \ \alpha_{ij} = \frac{\exp(\vec{q}_i^T \vec{k}_j)}{\sum_{j=1}^n \exp(\vec{q}_i^T \vec{k}_j)}$

$$f_{out,i}^{c_o} = W_V^{c_o c_o} f_{in,i}^{c_o} + \sum_{k} \alpha_{i,j} W_V^{c_o c_i} (P_i - \overline{P}) f_{in,j}^{c_i}$$

TopCoW 2024 Experiment

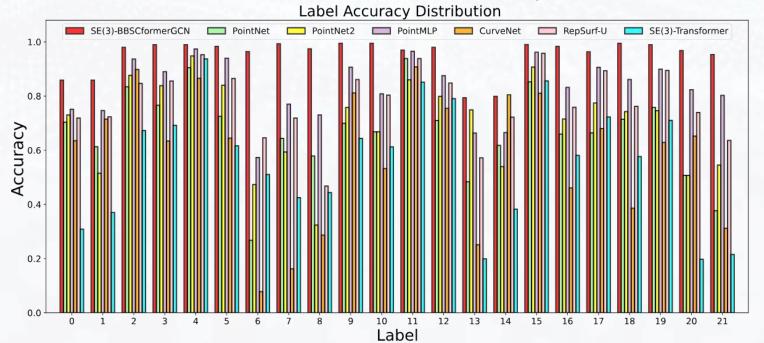


Classification performance

Method	Accuracy%	AUC-ROC%	Precision%	Recall%	F1 Score%
3D DenseNet [53]	97.02 ± 0.57	99.63 ± 1.94	95.86 ± 0.51	95.42 ± 0.41	97.47 ± 0.48
3D ResNet [54]	96.54 ± 0.54	99.61 ± 0.11	96.79 ± 0.76	96.44 ± 0.83	96.52 ± 0.80
PointNet [24]	94.10 ± 0.88	99.46 ± 0.20	94.81 ± 1.36	94.69 ± 0.92	94.57 ± 1.10
PointNet++ [55]	96.61 ± 0.53	99.61 ± 0.09	96.72 ± 0.49	96.52 ± 0.55	96.45 ± 0.60
CurveNet [56]	97.14 ± 1.16	99.72 ± 0.20	97.31 ± 1.16	97.07 ± 1.19	97.09 ± 1.22
RepSurf-U [57]	97.41 ± 0.68	99.86 ± 0.07	96.83 ± 0.52	96.61 ± 0.54	96.50 ± 0.55
PointMLP [58]	94.10 ± 2.27	99.03 ± 0.56	94.41 ± 2.35	94.05 ± 2.31	93.94 ± 2.40
SE(3)-Transformer [30]	61.35 ± 5.80	90.93 ± 1.31	62.36 ± 5.28	60.77 ± 5.70	60.58 ± 5.69
SE(3)-BBSCformer	87.91 ± 1.35	98.24 ± 0.31	88.97 ± 1.66	88.01 ± 1.32	87.98 ± 1.26
BBSCformerGCN	97.95 ± 1.22	99.89 ± 0.02	97.25 ± 0.79	98.34 ± 0.60	97.78 ± 0.70
SE(3)-BBSCformerGCN	97.53 ± 0.83	$\textbf{99.99} \pm \textbf{0.01}$	97.36 ± 0.53	$\textbf{98.44} \pm \textbf{0.31}$	$\textbf{97.87} \pm \textbf{0.41}$

Per-class classification accuracy

Clinical Experiment

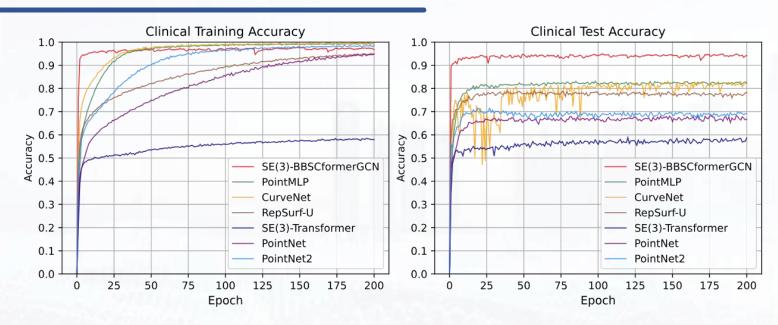


Classification performance

Method	Accuracy%	AUC-ROC%	Precision%	Recall%	F1 Score%
PointNet [24] PointNet++ [55]	69.20 ± 0.98	96.50 ± 0.24	70.02 ± 0.77	69.17 ± 0.96	68.90 ± 1.02
	70.27 ± 0.16	96.60 ± 0.17	70.82 ± 0.43	70.28 ± 0.20	70.05 ± 0.14
CurveNet 56	81.91 ± 0.14	93.80 ± 1.13	62.92 ± 3.14 78.34 ± 0.28 82.86 ± 0.14 61.05 ± 2.07	60.13 ± 4.25	58.51 ± 4.58
RepSurf-U 57	78.22 ± 0.17	98.40 ± 0.11		77.99 ± 0.29	78.00 ± 0.25
PointMLP 58	82.70 ± 0.10	98.66 ± 0.06		82.70 ± 0.10	82.67 ± 0.14
SE(3)-Transformer 30	61.96 ± 1.45	92.32 ± 0.96		61.94 ± 1.47	60.77 ± 2.57
SE(3)-BBSCformer	71.06 ± 1.39	93.25 ± 0.60	70.25 ± 1.16	71.04 ± 1.39	70.45 ± 1.21
BBSCformerGCN	95.45 ± 1.09	99.34 ± 0.21	95.10 ± 1.48	95.38 ± 1.13	95.23 ± 1.29
SE(3)-BBSCformerGCN	96.11 ± 1.01	99.38 ± 0.19	96.11 ± 0.93	96.08 ± 0.97	96.02 ± 1.05

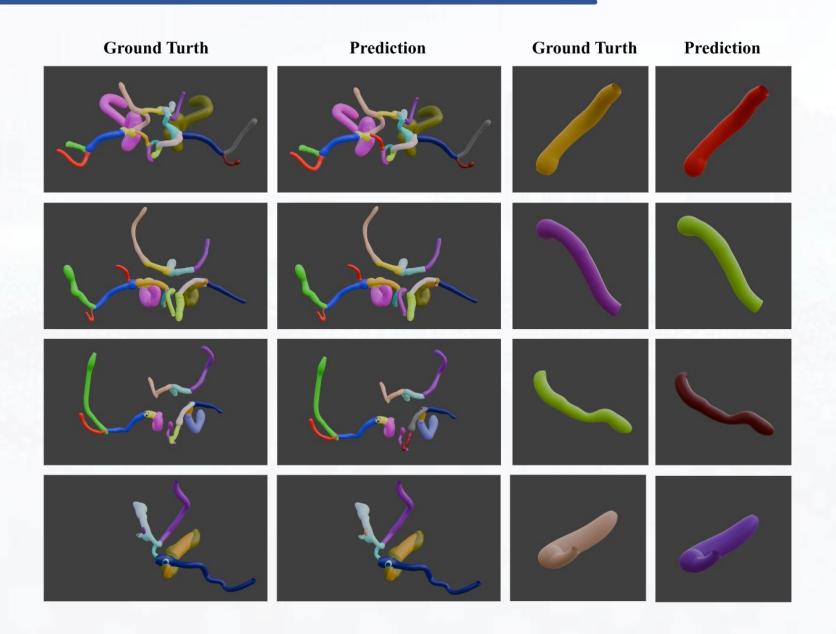
Per-class classification accuracy

Training Efficiency, Stability, and Computational Cost



- Training
 - Convergence speed
 - Training stability
 - Resistance to overfitting

- Evaluation time (ms)
- FLOPS
- Model parameters


Method	Evaluation Time(ms)	FLOPs(M)	Parameters(M)
3D DenseNet [53]	8.03	9743.76	18.56
3D ResNet [54]	10.95	11463.08	85.23
PointNet [24]	0.88	450.38	3.46
PointNet++ [55]	1.54	4067.53	1.74
CurveNet [56]	81.95	269.56	2.13
RepSurf-U [57]	59.84	911.32	1.48
PointMLP [58]	38.39	15733.95	13.23
SE(3)-Transformer [30]	19.03	456.33	0.12
SE(3)-BBSCformer	1.92	1.72	0.35
BBSCformerGCN	1.14	88.98	3.60
SE(3)-BBSCformerGCN	3.02	59.01	2.70

Case Study and Failure Case

Conclusion & Acknowledgements

Conclusion

- Using BBSC to analyze tubular structure, and a functional space is constructed for this type of tubular manifold.
- An analytical method is constructed that uses SE(3) isovariant mapping to analyze BBSC and graph convolution to process the topology of tubular topological manifolds.
- Achieves superior accuracy in Circle of Willis branch classification.

Acknowledgements

- The National Natural Science Foundation of China (Grant No.62072045), the Beijing Municipal Science and
 Technology Commission and the Zhongguancun Science Park Management Committee (Grant No.
 Z221100002722020), the Natural Science Foundation of Beijing (Grant No. 7242167), and the Teaching Reform
 Project of Beijing Normal University.
- Thanks to Peking Union Medical College Hospita (PUMCH) for providing clinical data.

Thanks

