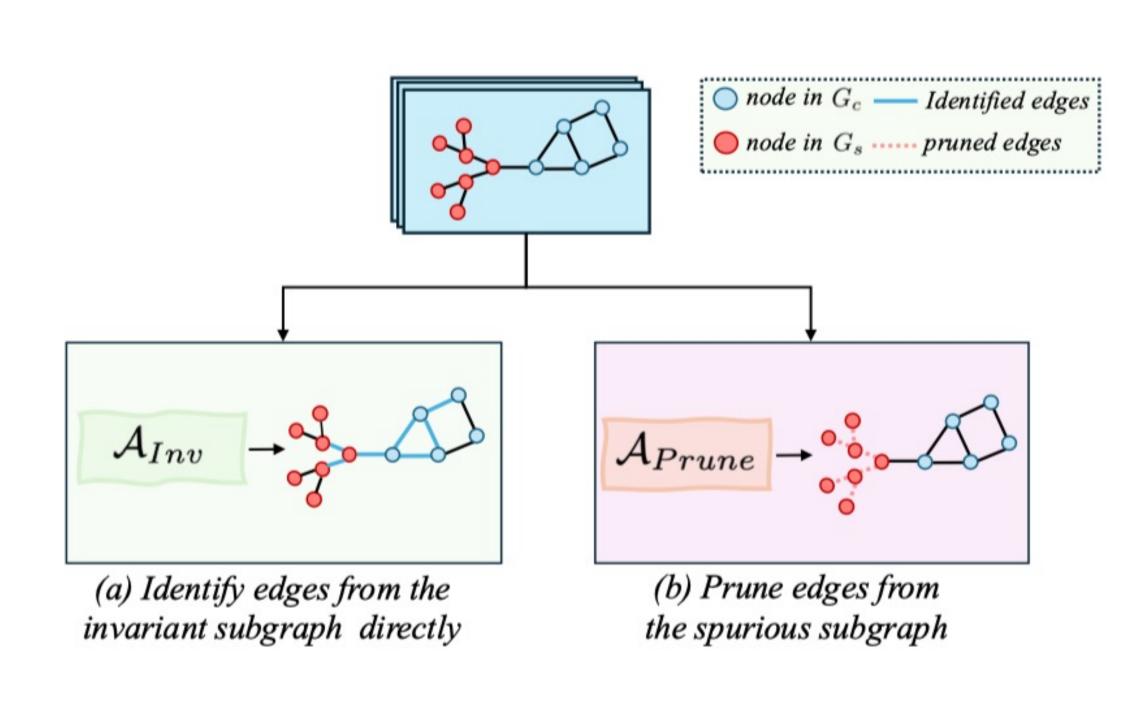


Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization



Tianjun Yao, Haoxuan Li, Yongqiang Chen, Tongliang Liu, Le Song, Eric Xing, Zhiqiang Shen

We show that pruning spurious (uninformative) edges can be more effective than directly identifying invariant subgraphs!

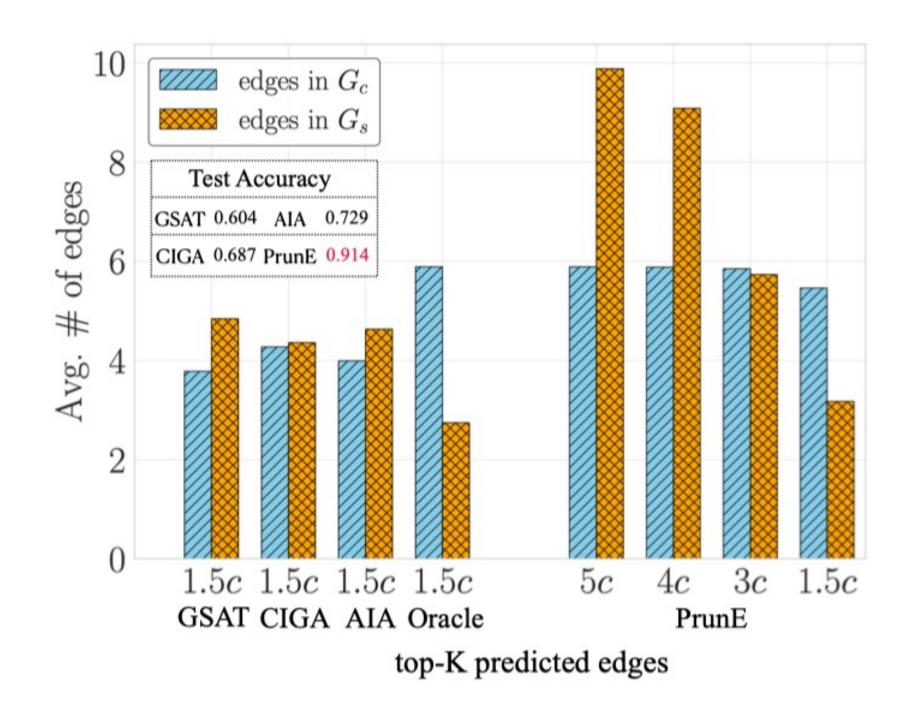


Illustration of Two Learning Pradigms

Pruning spurious edges lead to better preservation of invariant subgraph

Two Simple Regularizers

Overall goal: regularize the model to remove spurious edges

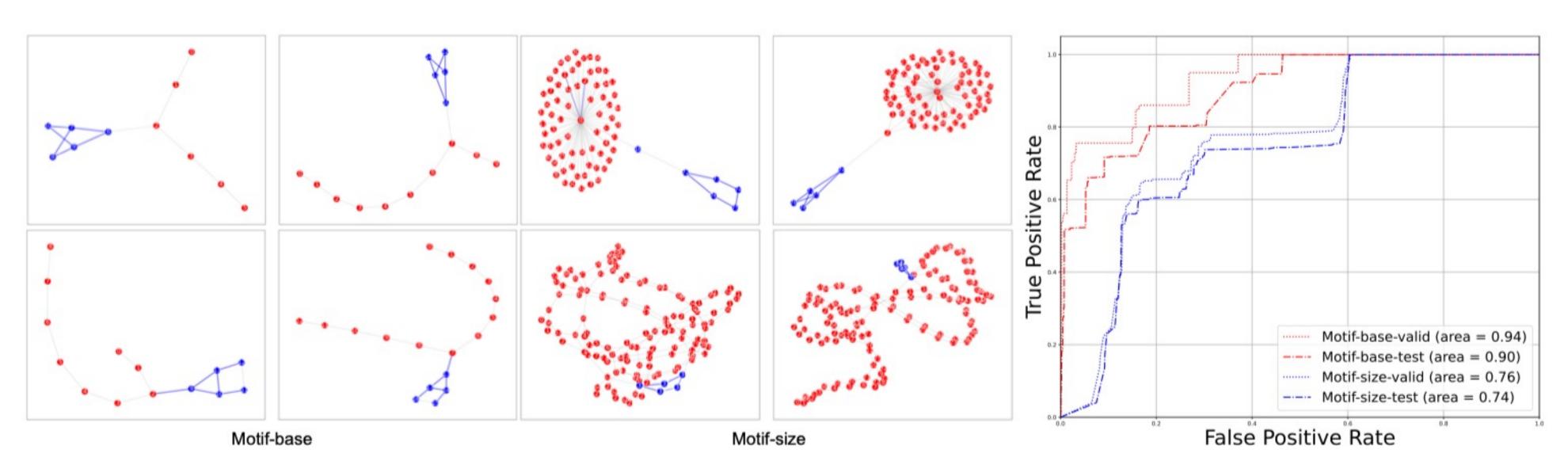
• Graph-size constraint: encourage the model to remove uninformative edges.

$$\mathcal{L}_e = \mathbb{E}_{\mathcal{G}} \left(\frac{\sum_{(i,j) \in \mathcal{E}} \widetilde{\mathbf{A}}_{ij}}{|\mathcal{E}|} - \eta \right)^2$$

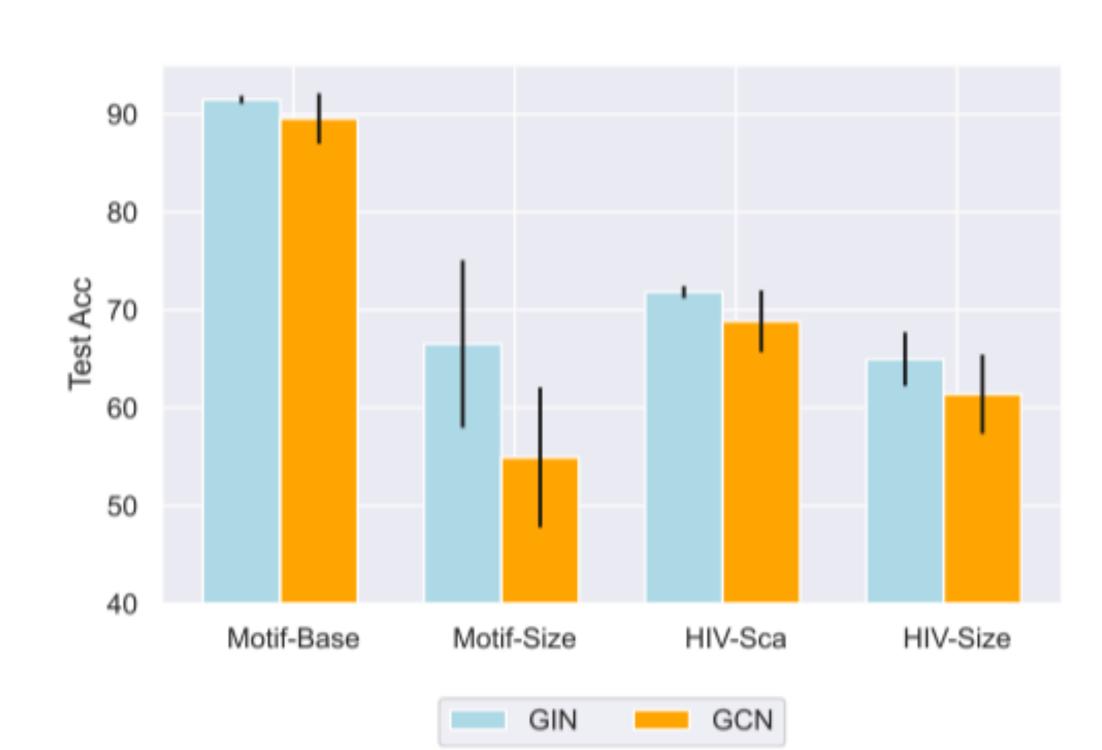
ullet arepsilon-probability Alignment: Align each edge probability to close to zero

$$\mathcal{L}_s = \mathbb{E}_{\mathcal{G}} \; rac{1}{|\mathcal{E}_s|} \sum_{e_{ij} \in \mathcal{E}_s} |p_{ij} - \epsilon|$$

• Final Objective: ERM loss tend to learn all useful features, while the two regularizers prunes uninformative edges, and retain invariant substructure


$$\mathcal{L} = \mathcal{L}_{GT} + \lambda_1 \mathcal{L}_e + \lambda_2 \mathcal{L}_s$$

Experimental results


PrunE achieves SOTA performance across various domains

Method	GOODMotif		GOODHIV		EC50			OGBG-Molbbbp	
	base	size	scaffold	size	scaffold	size	assay	scaffold	size
ERM	$68.66{\scriptstyle\pm4.25}$	$51.74{\scriptstyle\pm2.88}$	$69.58{\scriptstyle\pm2.51}$	59.94 ± 2.37	$62.77{\scriptstyle\pm2.14}$	$61.03{\scriptstyle\pm1.88}$	$64.93{\scriptstyle\pm6.25}$	$68.10{\scriptstyle\pm1.68}$	$78.29{\scriptstyle\pm3.76}$
IRM	70.65 ± 4.17	51.41 ± 3.78	$67.97{\scriptstyle\pm1.84}$	$59.00{\scriptstyle\pm2.92}$	63.96 ± 3.21	62.47 ± 1.15	72.27 ± 3.41	$67.22{\scriptstyle\pm1.15}$	$77.56{\scriptstyle\pm2.48}$
GroupDRO	68.24 ± 8.92	51.95 ± 5.86	70.64 ± 2.57	58.98 ± 2.16	64.13 ± 1.81	59.06 ± 1.50	70.52 ± 3.38	66.47 ± 2.39	79.27 ± 2.43
VREx	$71.47{\pm}6.69$	$52.67{\scriptstyle\pm5.54}$	$70.77{\scriptstyle\pm2.84}$	$58.53{\scriptstyle\pm2.88}$	$64.23{\scriptstyle\pm1.76}$	$63.54{\scriptstyle\pm1.03}$	$68.23{\scriptstyle\pm3.19}$	$68.74{\scriptstyle\pm1.03}$	$78.76{\scriptstyle\pm2.37}$
DropEdge	45.08±4.46	45.63±4.61	$70.78{\scriptstyle\pm1.38}$	58.53±1.26	63.91±2.56	61.93±1.41	73.79 ± 4.06	66.49±1.55	78.32 ± 3.44
G-Mixup	59.66 ± 7.03	52.81 ± 6.73	$70.01{\scriptstyle\pm2.52}$	59.34 ± 2.43	61.90 ± 2.08	61.06 ± 1.74	69.28 ± 1.36	67.44 ± 1.62	78.55 ± 4.16
FLAG	61.12 ± 5.39	51.66 ± 4.14	68.45 ± 2.30	60.59 ± 2.95	64.98 ± 0.87	64.28 ± 0.54	74.91 ± 1.18	67.69 ± 2.36	$79.26{\scriptstyle\pm2.26}$
LiSA	54.59 ± 4.81	53.46 ± 3.41	70.38 ± 1.45	52.36 ± 3.73	62.60 ± 3.62	60.96 ± 1.07	$69.73{\scriptstyle\pm0.62}$	$68.11{\scriptstyle\pm0.52}$	78.62 ± 3.74
DIR	62.07 ± 8.75	52.27 ± 4.56	68.07 ± 2.29	58.08 ± 2.31	63.91 ± 2.92	61.91 ± 3.92	66.13 ± 3.01	$66.86{\scriptstyle\pm2.25}$	76.40 ± 4.43
DisC	51.08 ± 3.08	50.39 ± 1.15	68.07 ± 1.75	58.76 ± 0.91	59.10 ± 5.69	57.64 ± 1.57	61.94 ± 7.76	$67.12{\scriptstyle\pm2.11}$	56.59 ± 10.09
CAL	65.63 ± 4.29	51.18 ± 5.60	67.37 ± 3.61	57.95 ± 2.24	65.03 ± 1.12	60.92 ± 2.02	74.93 ± 5.12	$68.06{\scriptstyle\pm2.60}$	$79.50{\scriptstyle\pm4.81}$
GREA	56.74 ± 9.23	54.13 ± 10.02	67.79 ± 2.56	60.71 ± 2.20	64.67 ± 1.43	62.17 ± 1.78	71.12 ± 1.87	$69.72{\scriptstyle\pm1.66}$	77.34 ± 3.52
GSAT	60.42 ± 9.32	53.20 ± 8.35	68.66 ± 1.35	$58.06{\scriptstyle\pm1.98}$	65.12 ± 1.07	61.90 ± 2.12	74.77 ± 4.31	$66.78{\scriptstyle\pm1.45}$	75.63 ± 3.83
CIGA	68.71 ± 10.9	49.14 ± 8.34	69.40 ± 2.39	59.55 ± 2.56	65.42 ± 1.53	64.47 ± 0.73	74.94 ± 1.91	64.92 ± 2.09	65.98 ± 3.31
AIA	$\underline{72.91 \scriptstyle{\pm 5.62}}$	$\underline{55.85{\scriptstyle\pm7.98}}$	$\underline{71.15{\scriptstyle\pm1.81}}$	$\underline{61.64}{\pm 3.37}$	$\overline{64.71} \pm 0.50$	$\overline{63.43}\pm 1.35$	$\underline{76.01}{\scriptstyle\pm1.18}$	$\textbf{70.79} \!\pm\! 1.53$	$\underline{81.03{\scriptstyle\pm5.15}}$
PrunE	91.48*±0.40	66.53*±8.55	71.84*±0.61	64.99*±1.63	67.56*±0.34	65.46*±0.88	$78.01^* \pm 0.42$	$\underline{70.32{\scriptstyle\pm1.73}}$	81.59±5.35

• PrunE provides explainability for graph-data under distribution shift

 Perform better with more expressive GNN

Robust to Concept Shift

PrunE	$\textbf{79.50} {\pm} 1.57$	90.28±1.72			
AIA	$\underline{74.21{\scriptstyle\pm1.81}}$	$\underline{82.51}{\scriptstyle\pm2.81}$			
CIGA	73.62 ± 0.86	81.68 ± 3.01			
GREA	60.07 ± 5.40	$78.27{\scriptstyle\pm4.29}$			
GSAT	56.76 ± 7.16	$76.07{\scriptstyle\pm3.48}$			
VRex	60.23 ± 1.70	81.56 ± 0.35			
IRM	59.90 ± 3.15	80.71 ± 0.46			
ERM	63.26 ± 2.47	81.44 ± 0.45			
	size	base			
Method	GOODHIV	GOODMotif			