

Graphs Help Graphs: Multi-Agent Graph Socialized Learning

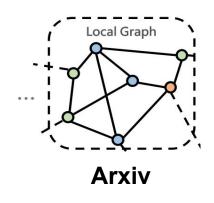
Jialu Li¹²³, Yu Wang^{*123}, Pengfei Zhu^{*123}, Wanyu Lin⁴, Xinjie Yao¹²³, Qinghua Hu¹²³

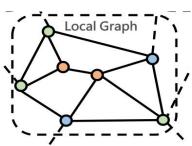
¹College of Intelligence and Computing, Tianjin University, Tianjin, China

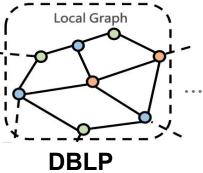
²Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin, China

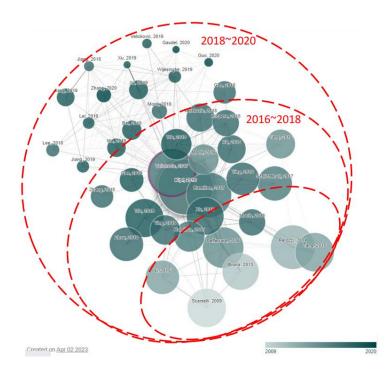
³Haihe Lab of ITAI, Tianjin, China

⁴Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

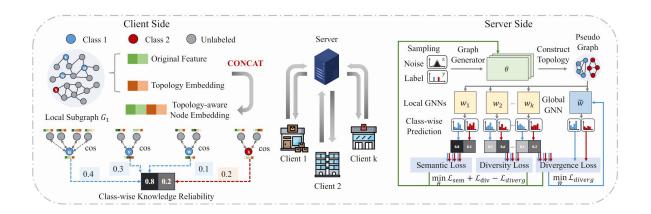


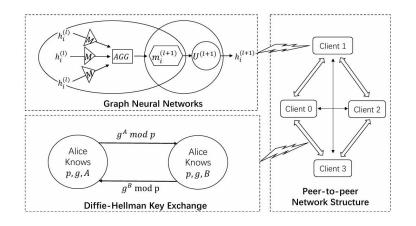

- Background
- **■** Related work
- **■** Motivation
- Proposed method
- Experiments
- **■** Conclusion



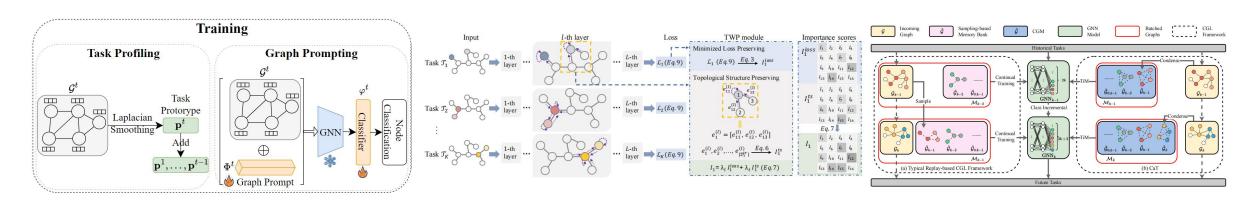

Socialized Learning

Google Scholar


Fragmented

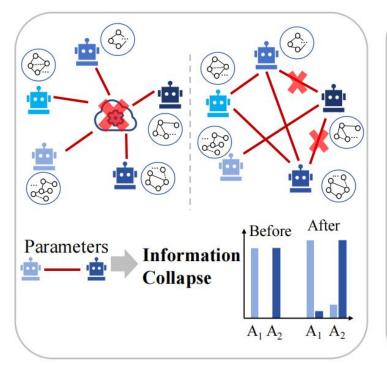

Dynamic

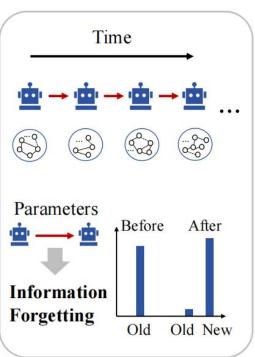
Socialized Learning

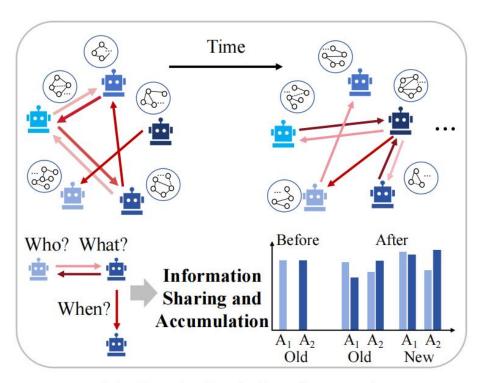


Centralized methods (Zhu et al., 2024)

Decentralization methods (Pei et al., 2021)




Parameter isolation (Niu et al., 2024)


Regularization methods (Liu et al., 2021)

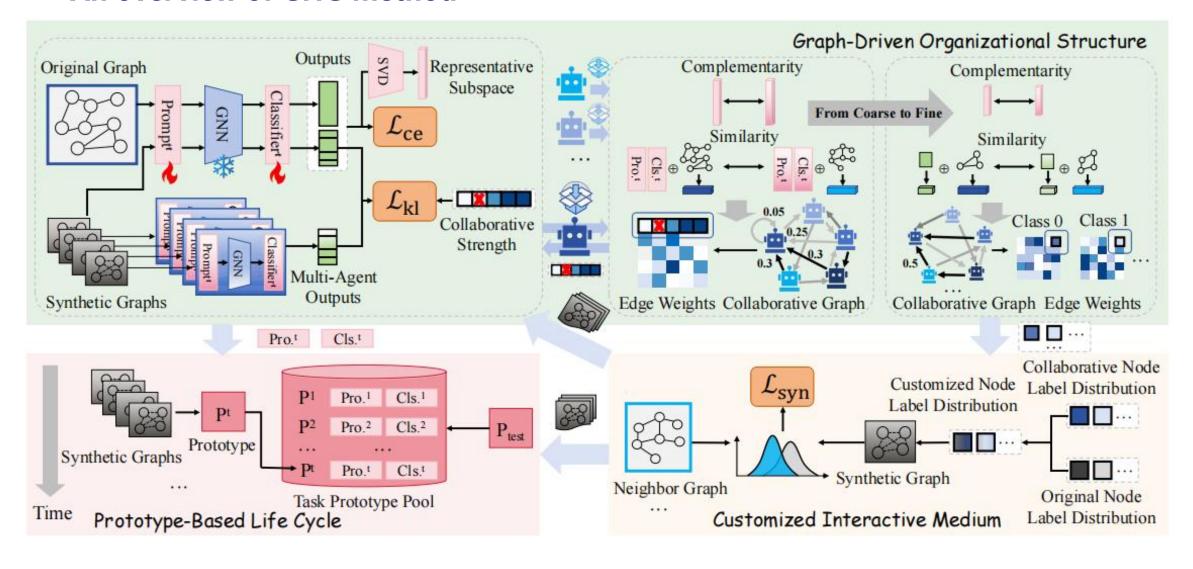
Replay methods (Liu et al., 2023)

- (a) Graph Federated Learning (b) Graph Lifelong Learning

(c) Graph Socialized Learning

Information Collapse

Information Forgetting


Information Sharing and Accumulation

Proposed method

An overview of GHG method

天津大学 Proposed method

Graph-Driven Organizational Structure (Who):

$$\min_{M_{a*}^t} \sum_{b=1}^{A} \left(\left(M_{ab}^t - \frac{|V_b^t|}{N^t} \right)^2 + w_{\mathcal{C}} \mathcal{C} \left(M_{ab}^t; G_a^t \| \overline{G}_{a*}^t; G_b^t \| \overline{G}_{b*}^t \right) - w_{\mathcal{S}} \mathcal{S} \left(M_{ab}^t; \Theta_a^t; \Theta_b^t \right) \right)$$

$$\mathcal{L}_{\text{all},a}^{t} = \mathcal{L}_{\text{ce}}\left(F_{a}^{t}\left(G_{a}^{t} \| \overline{G}_{a*}^{t}\right), Y_{a}^{t} \| \overline{Y}_{a*}^{t}\right) + w_{\text{kl}} \sum_{b=1}^{\mathcal{N}_{a}} M_{ab}^{t} \mathcal{L}_{\text{kl}}\left(F_{a}^{t}\left(\widehat{G}_{ab}^{t}\right), F_{b}^{t}\left(\widehat{G}_{ab}^{t}\right)\right),$$

Customized Interactive Medium (What):

$$\left| \widehat{V}_{ab,c}^{t} \right| = \frac{\left(\frac{\left| V_{b,c}^{t} \right|}{N^{t}} + w_{\text{col}} M_{ab,c}^{t} \right)}{N} \cdot \gamma \left| V_{b}^{t} \right|, \quad \mathcal{L}_{\text{syn},ab}^{t} = \sum_{c=1}^{C^{t}} \lambda_{ab,c} \left(\left\| \mu_{ab,c}^{t} - \widehat{\mu}_{ab,c}^{t} \right\|_{2}^{2} + w_{\sigma} \left\| \sigma_{ab,c}^{t} - \widehat{\sigma}_{ab,c}^{t} \right\|_{2}^{2} \right),$$

Prototype-Based Life Cycle (When): $P_a^t = \frac{1}{\left|\overline{V}_{a*}^t\right|} \sum_{i \in \overline{V}_a^t} \left\|_{b=1}^{N_a} R_{ab,i}^{t,(l)}$.

Experiments

Datasets and Setups:

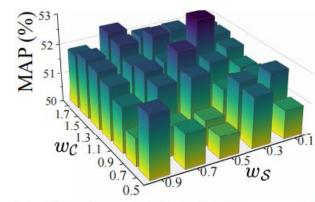
■ Datasets:

Datasets	CoraFull	Arxiv	Reddit	Cora	CiteSeer	SLAP	Computers
# nodes	19,793	169,343	227,853	2,708	3,327	20,419	13,752
# edges	130,622	1,166,243	114,615,892	5,429	4,732	172,248	245,778
# class	70	40	40	7	6	15	10
# agent	5	5	5	2	2	5	5
# task	7	4	4	3	3	3	2
# novel class	10	10	10	2	2	5	5

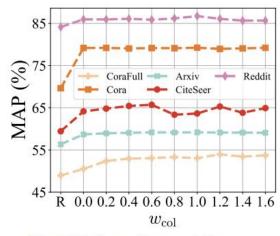
- Baselines: Single, five FL/GFL methods (i.e. FedAvg, DFedGNN, Fed-PUB, FedGTA, and FedTAD), five GLL methods (i.e. TWP, ERGNN, GSIP, TPP, and DMSG), graph federated lifelong learning methods (i.e. FedAvg combines with two representative GLL methods and POWER), and socialized learning method MASC.
- Metrics: Mean Average performance and Mean Average Forgetting

$$MAP = \frac{1}{A} \sum_{a=1}^{A} \frac{1}{T} \sum_{t=1}^{T} J^{T,t}, MAF = -\frac{1}{A} \sum_{a=1}^{A} \frac{1}{T-1} \sum_{t=1}^{T-1} (J^{T,t} - J^{t,t}).$$

■ Performance Comparison


Table 1: Performance comparison on five datasets in strong heterogeneity setups. Results are averaged Table 2: Performance comparison on SLAP and Comamong three trials. The best and second results are highlighted in **bold** and <u>underline</u>. puters datasets in strong heterogeneity setups.

Dataset	Paradigm	Cora	aFull	Ar	xiv	Red	ddit	Co	ora	Cite	Seer
Metric		MAP↑	MAF↓	MAP↑	MAF↓	MAP↑	MAF↓	MAP↑	MAF↓	MAP↑	MAF↓
Single	e	4.2±0.1	36.7±0.4	8.4±0.0	35.1±0.2	15.8±0.1	60.1±0.5	18.2±0.1	54.9±0.1	16.9±0.0	54.9±0.0
FedAvg DFedGNN	FL GFL	4.6±0.1	38.3±0.2 39.5±0.4							17.0±0.0 17.0±0.0	
Fed-PUB	GFL	4.0±0.1	34.0±0.3	7.7±0.2	35.1 ± 0.1	13.5 ± 0.3	48.1±0.6	16.9 ± 0.1	53.0±0.2	16.7 ± 0.0	55.9 ± 0.2
FedGTA FedTAD	GFL GFL	4.6±0.1 4.6±0.2	38.1±0.4 37.9±0.4	8.7±0.1 8.9±0.1						17.0 ± 0.0 17.0 ± 0.0	
TWP	GLL	5.1±0.2	34.9±0.2	8.4±0.1	35.1±0.1	16.2±0.2	58.6±0.5	18.6±0.1	55.2±0.1	17.0±0.0	54.9±0.1
ERGNN	GLL									17.9 ± 0.1	
GSIP	GLL		A STATE OF THE PARTY OF THE PAR	AND DESCRIPTION OF THE PROPERTY.			Section 1		The second second	19.6 ± 0.5	
TPP	GLL									51.6 ± 0.1	
DMSG	GLL	27.3±0.6	9.0±1.0	21.8±0.1	8.8±0.2	47.9±0.2	13.2±1.6	37.5±3.5	27.7±5.3	33.4±0.8	28.7±1.3
Fed-TPP Fed-DMSG POWER	GFLL GFLL GFLL	37.3 ± 0.3	0.1±0.5	22.7 ± 0.3	7.9±0.6	57.4±0.7	6.4±0.4	39.9±1.6	18.1±3.2	$\frac{51.7 \pm 0.1}{40.1 \pm 1.0}$ 36.9 ± 2.5	14.1±1.3
MASC GHG	SL GSL	36.7±0.4	11 ECHI	22.3±0.5	16.5±0.7	58.1±1.8	4.6±3.2	39.2±2.3	23.3±4.3	36.6 ±0.2	1180000


Dataset	Para.	SL	AP	Computers			
Metric		MAP↑	MAF↓	MAP↑	MAF↓		
Single	-	8.2±0.1	34.1±1.8	13.6±2.0	30.8±7.9		
FedAvg	GFL	8.0 ± 0.1	32.9±0.6	10.5 ± 0.4	4.9±2.9		
DFedGNN	GFL	8.1±0.1	33.8 ± 0.3	19.8±2.2	21.8±5.3		
Fed-PUB	GFL	11.6 ± 0.1	42.3±1.9	27.5 ± 1.1	64.7±2.9		
FedGTA	GFL	8.3 ± 0.2	33.7±2.3	13.5±5.2	10.6 ± 4.2		
FedTAD	GFL	8.1 ± 0.1	31.8 ± 2.2	10.5 ± 0.4	5.0 ± 6.7		
TWP	GLL	8.1±0.1	33.2±1.5	14.5±1.0	29.2±4.2		
ERGNN	GLL	15.6 ± 0.2	20.8 ± 1.1	18.0 ± 2.0	24.1 ± 6.1		
GSIP	GLL	15.7 ± 0.5	15.9 ± 0.7	19.2±1.0	36.4±5.2		
TPP	GLL	24.8±1.3	15.8 ± 2.0	36.7 ± 0.6	0.0 ± 0.0		
DMSG	GLL	15.8 ± 0.2	13.6±0.5	28.5±2.4	30.7 ± 5.2		
Fed-TPP	GFLL	27.2±1.2	12.3±0.7	36.5±1.5	0.0±0.0		
Fed-DMSG	GFLL	18.0±0.3	9.8±0.7	32.2±3.1	3.6 ± 2.8		
POWER	GFLL	15.5 ± 0.5	20.1±0.2	10.7±3.2	24.4±7.3		
MASC	SL	15.0±0.3	18.6±0.8	24.2±1.6	21.6±1.3		
GHG	GSL	62.4±3.0	0.0 ± 0.0	82.5 ± 0.2	0.0 ± 0.0		

Experiments

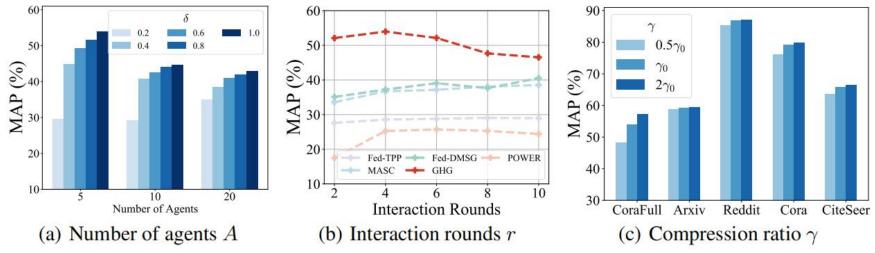
■ Hyper-Parameter Analysis

(a) Complementarity weight $w_{\mathcal{C}}$ and similarity weight $w_{\mathcal{S}}$

(b) Collaborative weight $w_{\rm col}$

Figure 3: The analysis of hyper-parameters.

■ Ablation Study


Table 3: Ablation comparisons on five datasets.

Method	CoraFull	Arxiv	Reddit	Cora	CiteSeer
В	28.9±0.2	16.4±0.3	43.4±0.2	53.6±1.6	51.6±0.1
$B+\mathcal{L}_{syn}$	33.2±0.3	26.4 ± 0.3	48.3 ± 0.2	54.1 ± 0.2	52.6 ± 0.7
$B+\mathcal{L}_{syn}+\mathcal{L}_{ce}$	51.6 ± 1.0	58.9 ± 0.3	83.4±0.9	78.8 ± 4.2	63.6±2.2
$B+\mathcal{L}_{syn}+\mathcal{L}_{ce}+\mathcal{L}_{kl}$	54.0±0.8	59.2 ± 0.3	$\pmb{86.7} {\pm} 0.9$	79.2±3.4	65.7±4.1

Experiments

■ Graph Socialization Necessity and Efficiency

■ Visulization

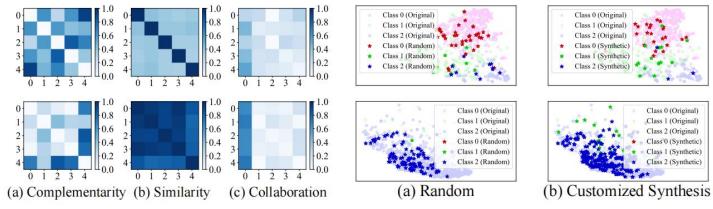


Figure 5: The visualization of collaborative graph Figure 6: The visualization of node embeddings edge weight matrices on Reddit dataset.

on Arxiv dataset.

- We present a practical learning paradigm called Graph Socialized Learning (GSL), enabling each agent's growth via collaborative interaction.
- Graph-driven organizational structure, customized interactive medium, and prototype-based life cycle form three key elements of socialized collaboration.
- Our method consistently achieves performance improvements on multiple datasets and demonstrates the effectiveness of all components.