

Conformal Prediction in The Loop: A Feedback-Based Uncertainty Model for Trajectory Optimization

Han Wang, Chao Ning*

Data-driven Optimization & Control under Uncertainty (DOCU) Lab Shanghai Jiao Tong University, Shanghai, China

NeurIPS 2025, December 2-7, San Diego CA, USA

Conformal Prediction (CP) Theory

Conformal Prediction Application

Distribution Shift

Achieved through online slidinglearning window methods.

Coverage Efficiency

Achieved through optimizing the shape or the length of the prediction region.

Limitation: Focusing on improving the predictive performance rather than directly targeting downstream decision-making.

Conformal Prediction-based Trajectory Optimization

Applying traditional and improved CP (ACI, EndPI) methods to trajectory optimization in single-agent and multi-agent systems.

Limitation: CP is employed to sequentially generate prediction regions without utilizing the decided information.

Motivation:

- Most existing CP studies focus on improving prediction models but overlook their impact on downstream decision-making.
- Current CP-based decision pipelines are sequential, blocking feedback from decisions to CP and thus limiting future performance improvement.

Preliminaries

Agent Nonlinear Dynamics

$$x_{t+1} = f\left(x_t, u_t\right)$$

$$x_0 = x_{init}$$

System States

Control Inputs

Initial State

Joint Obstacle Dynamics

$$Y_{t+1} = g(Y_{t-h}, ..., Y_{t-1}) + \omega_t$$

$$Y := (Y_0, ..., Y_T)$$

Joint Obstacle States

State Predictor (e.g. LSTM)

Random Modeling Error

Entire Trajectory of Obstacles

Calibration Dataset

$$D_{cal} \coloneqq \left\{ Y^{(1)}, ..., Y^{(N)} \right\} \quad \begin{array}{c} \textbf{Division} \\ D_{cal}^1 \coloneqq \left\{ Y^{(1)}, ..., Y^{(K)} \right\} \\ D_{cal}^2 \coloneqq \left\{ Y^{(K+1)}, ..., Y^{(K+L)} \right\} \end{array}$$

The calibration dataset is divided into two subsets

Preliminaries

Trajectory Optimization (TO) Problem

$$\min_{x_{t+1:T}, u_{t+1:T}} \left| J\left(x_{t+1:T}, u_{t+1:T}\right) = l_T\left(x_T\right) + \sum_{\tau=t}^T l_\tau\left(x_\tau, u_\tau\right) \right|$$

$$s.t. \quad x_{\tau+1} = f\left(x_\tau, u_\tau\right),$$

$$x_\tau \in \mathcal{X},$$

$$u_\tau \in \mathcal{U},$$

$$\mathbb{P}\left\{\bigcap_{\tau=1}^T \left\{c\left(x_\tau, Y_\tau\right) \ge 0\right\}\right\} \ge 1 - \alpha$$

Minimizing the cost function (Optimizing the trajectory)

Dynamics of system

System state constraint

Control input constraint

Joint chance constraint: The joint probability of satisfying the constraint over the total mission time is no less than $1 - \alpha$

Joint Chance Constraint Reformulation

$$\mathbb{P}\left\{\bigcap\nolimits_{\tau=1}^{T}\left\{c\left(x_{\tau},Y_{\tau}\right)\geq0\right\}\right\}\geq1-\alpha\Leftarrow\left\{\sum\nolimits_{\tau=1}^{T}\alpha_{\tau}\leq\alpha\right\}$$
 Boole's inequality

Preliminaries

Vanilla Conformal Prediction

Nonconformity Score

$$R^{(0)}, R^{(1)}, ..., R^{(N)}$$

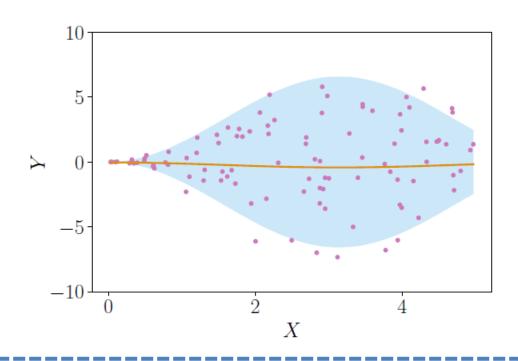
N + 1 Exchangeable

Random Variable

Coverage Guarantee

$$\left| \mathbb{P}\left\{ R^{(0)} \le 1 - C^{1-\alpha} \right\} \ge 1 - \alpha$$

$$C^{1-\alpha} = Quantile_{1-\alpha}\left(R^{(1)}, ..., R^{(N)}, \infty\right)$$



If $R^{(0)}, R^{(1)}, ..., R^{(N)}$ are N+1 **exchangeable** random variables, then for a failure probability $\alpha \in (0,1)$, it holds that

$$\mathbb{P}\left\{R^{(0)} \leq 1 - Quantile_{1-\alpha}\left(R^{(1)}, \dots, R^{(N)}, \infty\right)\right\} \geq 1 - \alpha$$

Feedback-based Conformal Prediction

Individual Chance Constraints Reformulation

Define the nonconformity score

$$R_{\tau|t} = \left\| Y_{\tau} - \hat{Y}_{\tau|t} \right\|, R_{\tau|t}^{(i)} = \left\| Y_{\tau}^{(i)} - \hat{Y}_{\tau|t}^{(i)} \right\|, \forall i = 1, ..., K$$

Vanilla Conformal **Prediction Theory**

Obtain coverage guarantee

$$\mathbb{P}\left\{\left\|Y_{\tau} - \hat{Y}_{\tau|t}\right\| \leq Quantile_{1-\alpha_{\tau}}\left(R_{\tau|t}^{(1)}, \dots, R_{\tau|t}^{(K)}, \infty\right)\right\} \geq 1 - \alpha_{\tau}$$

Lem. 4.1.

$$\mathbb{P}\{c(x_{\tau}, Y_{\tau}) \ge 0\} \ge 1 - \alpha_{\tau}$$

Reformulation
$$c(x_{\tau}, \hat{Y}_{\tau|t}) \geq LQuantile_{1-\alpha_{\tau}}(R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty)$$

Feedback-based Conformal Prediction

Posterior Probability Computation

Define the nonconformity score

$$S_{\tau} = c(x_{\tau}^*, Y_{\tau}), S_{\tau}^{(i)} = c(x_{\tau}^*, \hat{Y}_{\tau|\tau-1} + \omega_{\tau}^{(i)}), \forall i = K+1, ..., L$$

Obtain coverage guarantee

$$\mathbb{P}\left\{c\left(x_{\tau}^{*}, Y_{\tau}\right) \leq Quantile_{1-\alpha_{\tau}}\left(S_{\tau}^{(K+1)}, \dots, S_{\tau}^{(K+L)}, \infty\right)\right\} \geq 1-\beta_{\tau}$$

Vanilla Conformal Prediction Theory

Lem. 4.2. With the true state X_{τ}^* , the upper bound of the posterior violation probability is calculated as $\mathbb{P}\{c(x_{\tau}^*,Y_{\tau})<0\} \leq \beta_{\tau} = \left(1+\sum_{i=1}^L \mathbb{I}\left(S_{\tau}^{(K+i)}<0\right)\right)/(1+L)$

Feedback-based Conformal Prediction

Optimization Problem Reformulation

$$\min_{x_{t+1:T}, u_{t+1:T}} J(x_{t+1:T}, u_{t+1:T}) = l_{T}(x_{T}) + \sum_{\tau=t}^{T} l_{\tau}(x_{\tau}, u_{\tau})$$

$$s.t. \quad x_{\tau+1} = f(x_{\tau}, u_{\tau}),$$

$$x_{\tau} \in \mathcal{X},$$

$$u_{\tau} \in \mathcal{U},$$

$$\mathbb{P}\left\{\bigcap_{\tau=1}^{T} \left\{c(x_{\tau}, Y_{\tau}) \ge 0\right\}\right\} \ge 1 - \alpha$$

However, the reformulated problem requires treating the allocation risk $\alpha_{t+1:T}$ as a decision variable jointly optimized with $x_{t+1:T}$ and $u_{t:T-1}$, which makes the problem challenging to solve.

Boole's inequality

$$\mathbb{P}\left\{c\left(x_{\tau},Y_{\tau}\right)\geq 0\right\}\geq 1-\alpha_{\tau}$$

$$\sum\nolimits_{\tau=1}^{T}\alpha_{\tau}\leq\alpha$$

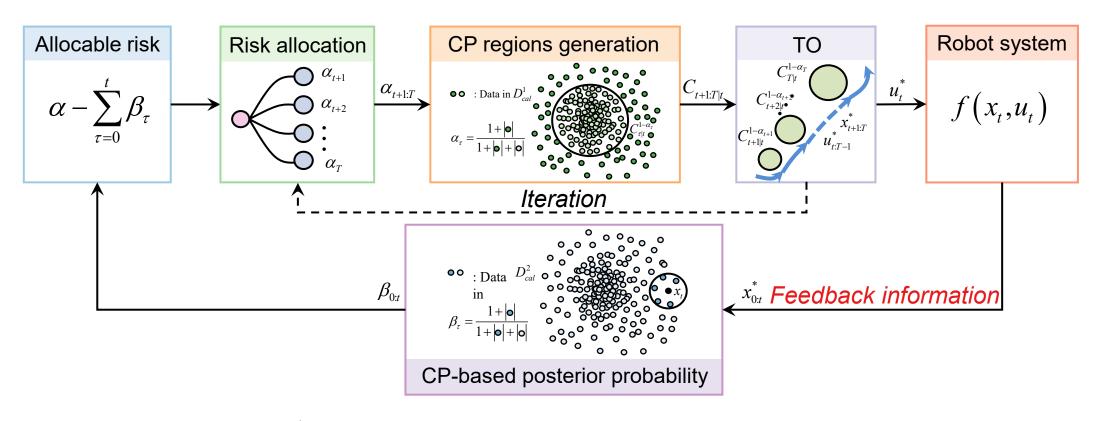
$$c(x_{\tau}, \hat{Y}_{\tau|t}) \ge LQuantile_{1-\alpha_{\tau}}(R_{\tau|t}^{(1)}, ..., R_{\tau|t}^{(K)}, \infty)$$

$$\sum\nolimits_{\tau=t+1}^{T}\alpha_{\tau}\leq\alpha-\sum\nolimits_{\tau=1}^{t}\beta_{\tau}$$

Lem. 4.2.
$$\mathbb{P}\{c(x_{\tau}^*, Y_{\tau}) < 0\} \le \beta_{\tau} = \left(1 + \sum_{i=1}^{L} \mathbb{I}\left(S_{\tau}^{(K+i)} < 0\right)\right) / (1+L)$$

Trajectory Optimization using Fb-CP

Trajectory Optimization Framework using Fb-CP



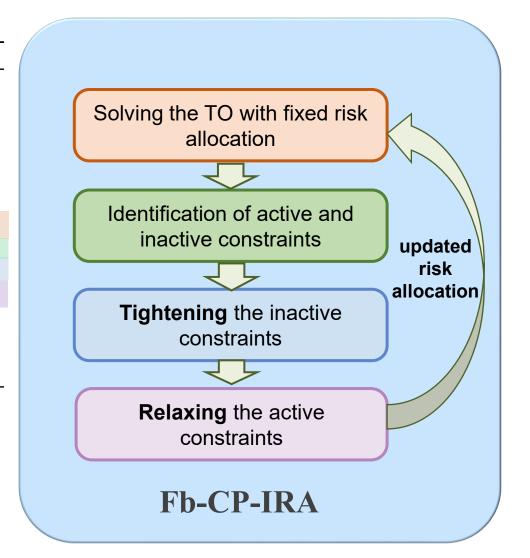
- The information in $x_{0:t}^*$ guides the feedback-based adjustments of the size of the prediction regions $C_{\tau|t}^{1-\alpha_{\tau}}$ through posterior probability calculations
- TO problem is solved iteratively by alternating between two steps: 1) risk allocation and 2) TO with the fixed $\alpha_{t+1:T}$

Iterative Risk Allocation

Algorithm 1 Fb-CP using IRA at time t

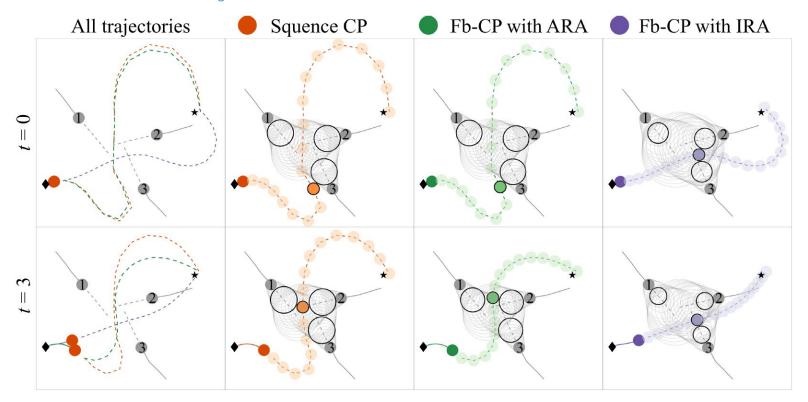
- 1: **Input:** α , $\alpha_{t:T}$, $\beta_{0:t-1}$, ϵ , η , D^{1}_{cal} , D^{2}_{cal}
- 2: Observe the system state x_t and joint obstacle states Y_t
- 3: $\hat{Y}_{t+1|t}, ..., \hat{Y}_{T|t} \leftarrow$ Trajectory prediction using LSTMs based on $Y_0, ..., Y_t$
- 4: $\beta_t \leftarrow \text{Posterior probability calculation (8) } \{\text{Using } x_t \text{ and } D_{cal}^2\}$
- 5: $J^*(\alpha_{t+1:T}^{-1}) \leftarrow \infty$, $\alpha_{t+1:T}^0 \leftarrow \alpha_{t+1:T}$, $n \leftarrow 0$ {Initialization of IRA}
- 6: **repeat**
- 7: $J^*(\alpha_{t+1:T}^n)$, $x_{t+1:T}^n$, $u_{t:T-1}^n \leftarrow$ Solve the lower-stage problem (10) with $\alpha_{t+1:T}^n$
- 8: $\mathcal{I}_{act}, \mathcal{I}_{ina}, N_{act} \leftarrow \text{Identification of active and inactive constraints}$
- 9: $\widetilde{\alpha}_{t+1:T}^n \leftarrow \text{Transitional risk allocation calculation (15)}$
- 10: $\alpha_{t+1:T}^{n+1} \leftarrow \text{New risk allocation calculation (17)}$
- 11: $n \leftarrow n+1$
- 12: **until** $|J^*(\alpha_{t+1:T}^{n-1}) J^*(\alpha_{t+1:T}^{n-2})| < \epsilon$
- 13: **Output:** $\beta_{0:t}$, $u_{t:T-1}^{n-1}$, $\alpha_{t+1:T} = \alpha_{t+1:T}^{n-1}$

It iterates between <u>risk allocation</u> and <u>trajectory optimization</u>.



Simulation Result (Trajectory)

Trajectories of different control methods



Owing to posterior probability updates, Fb-CP-ARA and Fb-CP-IRA can dynamically tighten the prediction regions as more vehicle positions become available, thereby achieving less conservative trajectories than S-CP.

Through iterative risk allocation, Fb-CP-IRA further enhances flexibility in distributing risks across future times, resulting in a more efficient and less conservative trajectory.

Simulation Result (Cost)

Average cost, computation time, and collision avoidance rate with different methods

	CC			ACI-MP	RF-CP	S-CP	Fb-CP	
						2 02	ARA	IRA
Average cost	$\eta = 1000$	59.25	$\alpha = 0.05$	17.970	15.794	17.321	15.356	7.189
	$\eta = 500$	47.50	$\alpha = 0.10$	17.263	14.378	16.17	14.228	6.798
	$\eta = 100$	22.46	$\alpha = 0.15$	16.096	11.922	14.83	12.354	6.191
	$\eta = 50$	21.34	$\alpha = 0.20$	15.310	10.032	13.217	10.22	5.398
Average computation time	$\eta = 1000$	0.019	$\alpha = 0.05$	0.022	0.487	0.022	0.027	0.038
	$\eta = 500$	0.019	$\alpha = 0.10$	0.026	0.494	0.020	0.021	0.039
	$\eta = 100$	0.021	$\alpha = 0.15$	0.021	0.545	0.021	0.020	0.037
	$\eta = 50$	0.022	$\alpha = 0.20$	0.022	0.500	0.020	0.019	0.036
Collision avoidance rate	$\eta = 1000$	97.0%	$\alpha = 0.05$	98.6%	98.7%	98.8%	98.2%	96.3%
	$\eta = 500$	92.8%	$\alpha = 0.10$	93.3%	96.9%	93.5%	94.6%	94.1%
	$\eta = 100$	82.5%	$\alpha = 0.15$	91.5%	92.4%	92.0%	90.2%	91.9%
	$\eta = 50$	79.1%	$\alpha = 0.20$	87.9%	90.0%	88.2%	86.7%	88.2%

The methods used in the simulation

- ◆ Conformal Control (CC)
- ◆ ACI for Motion Planning (ACI-MP)
- Recursively Feasible MPC using CP (RF-CP)
- ◆ Sequential Conformal Prediction (S-CP)
- Fb-CP with Average Risk Allocation (Fb-CP-ARA)
- Fb-CP with Iterative Risk Allocation (Fb-CP-IRA)

- The Fb-CP-ARA reduces the cost by an average of 11.34% compared with S-CP, thanks to the feedback information of posterior probabilities, with a negligible additional computational burden.
- By flexibly allocating the additional allowable risk provided by posterior probabilities, Fb-CP-IRA achieves a 58.50% reduction in average cost compared with S-CP.

- We propose a novel framework that integrates CP with decision-making, enabling feedback-driven adjustment of prediction regions.
- Fb-CP provably maintains prediction validity while improving decision performance.
- An Iterative Risk Allocation method is developed, providing convergence guarantees and enhanced trajectory optimization.
- Fb-CP is extended to handle distribution shifts via a weighted calibration strategy, ensuring robustness under changing environments.

Thank you very much!

Code repository:

https://github.com/DOCU-Lab/Feedback-based_Conformal_Prediction

PDF of our paper:

https://arxiv.org/abs/2510.16376

