

From Human Attention to Diagnosis:

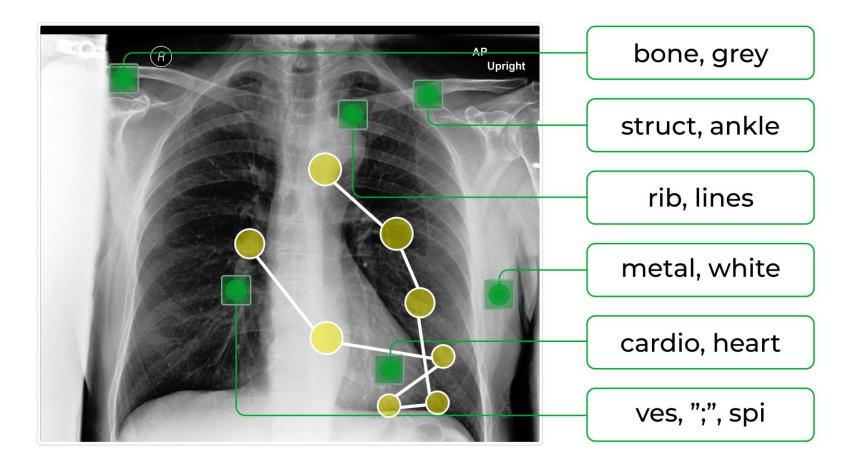
Semantic Patch-Level Integration of
Vision-Language Models in Medical Imaging

Motivation

Why gaze?

- Expert eye movements encode diagnostic strategy.
- Fixations capture what clinicians consider important.
- We can use that signal to teach models where to look.

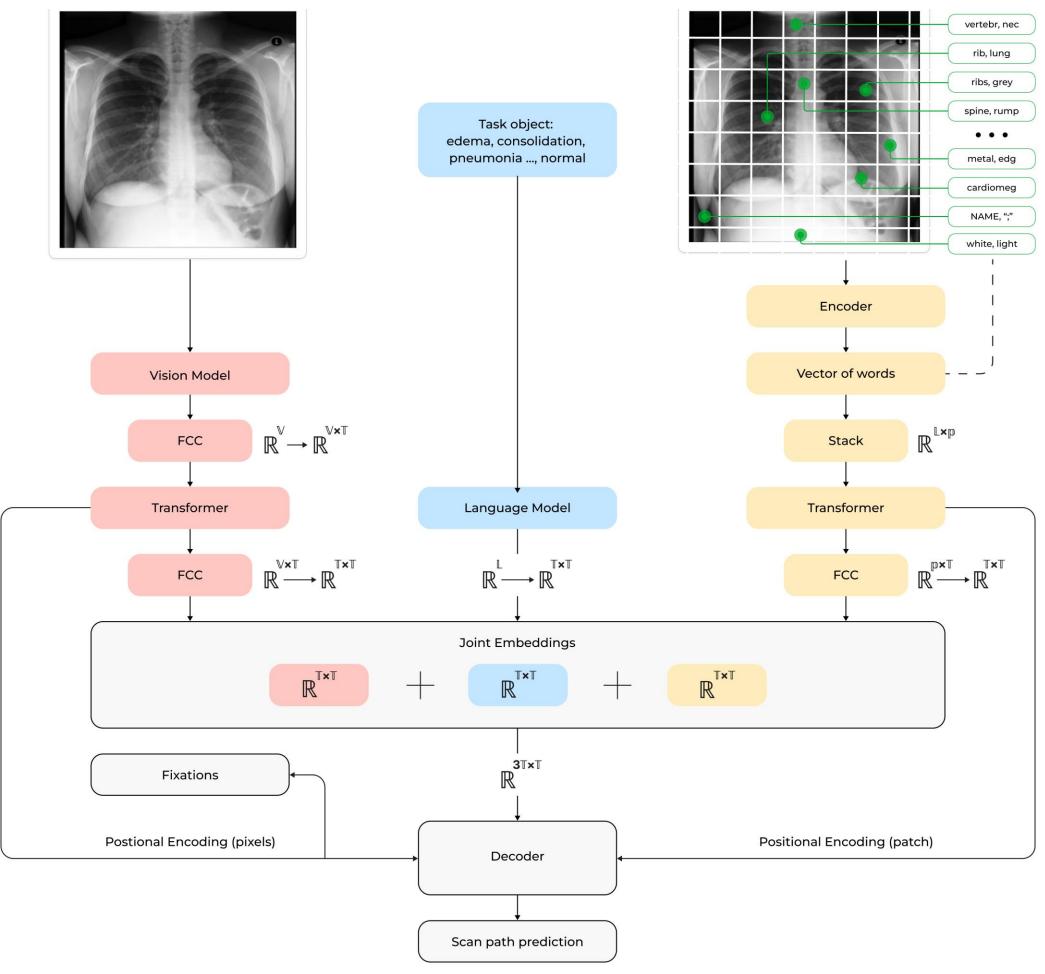
- Current gaze models mainly capture low-level saliency, ignoring patch-level meaning.
- We extract semantic signals from medical vision—language models and fuse them with visual features.
- Result: semantically-aware scanpaths that better reflect clinical reasoning.



Scanpath visualization on a chest X-ray

Method

- Extract patch-level semantics from a medical VLM via a logit-lens.
- Fuse semantic vectors with visual features in a transformer.
- Predict continuous fixation coordinates (x,y) and dwell time per fixation.
- Sample stochastic scanpaths for downstream use.



LogitGaze-Med architecture

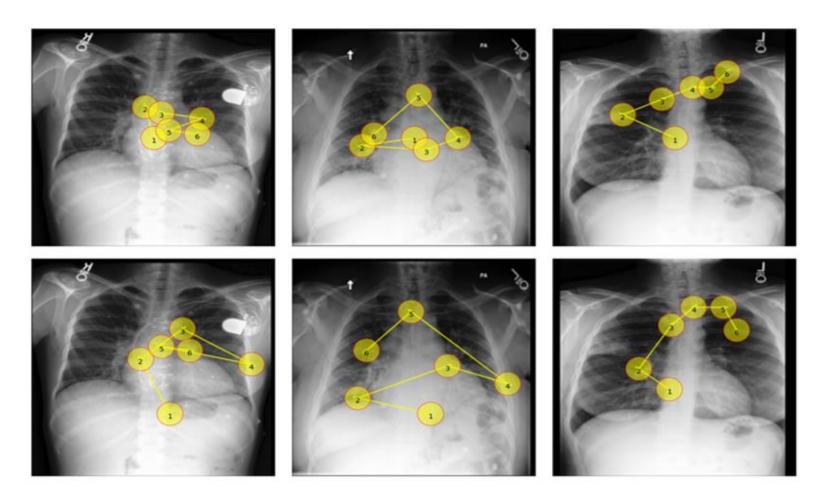
Results — realism and diagnostic benefit

QUANTITATIVE

Method	ScanMatch ↑		
	w/o Dur.	w/ Dur.	
GazeFormer	0.293 ± 0.021	0.201 ± 0.015	
HAT	0.309 ± 0.020	_	
GazeSearch	0.332 ± 0.019	0.223 ± 0.014	
LogitGaze	0.328 ± 0.018	0.225 ± 0.015	
LogitGaze-Med (Res) LogitGaze-Med (CheX)	0.416 ± 0.017 0.419 ± 0.016	0.325 ± 0.012 0.330 ± 0.010	

Performance on ScanMatch similarity metric

QUALITATIVE



Comparison of human scanpaths (top), LogitGaze-Med predictions (bottom)

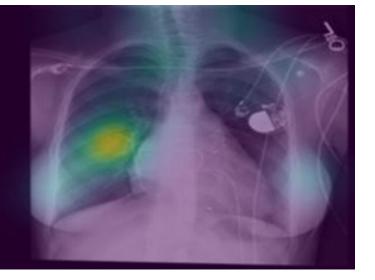
Results — realism and diagnostic benefit. Downstream task

QUANTITATIVE

Method	Baseline	Temporal	U-Net
Eye-Gaze	0.77 ± 0.02	0.82 ± 0.03	0.87 ± 0.02
GazeFormer	0.78 ± 0.02	0.84 ± 0.02	0.89 ± 0.01
LogitGaze	0.80 ± 0.01	0.87 ± 0.02	0.90 ± 0.01
LogitGaze-Med	0.82 ± 0.01	0.90 ± 0.02	0.91 ± 0.01

AUROC scores across three classification setups

QUALITATIVE



(a) Original CXRs

(b) Human

(c) LogitGaze-Med

(d) Eye-Gaze baseline

Conclusions

Realism

Synthetic scanpaths closely match human patterns (+ScanMatch 20–30%).

Effectiveness

Adding scanpaths improves diagnosis (AUROC +4–6 pp).

Practicality

Integrates with existing pipelines; requires more data and clinical validation.