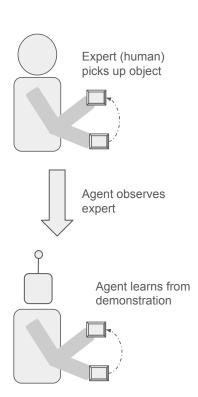
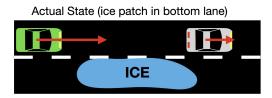
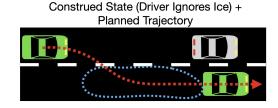
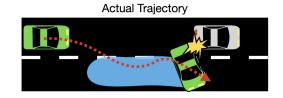


Estimating Cognitive Biases with Attention-Aware Inverse Planning


Sounak Banerjee¹ Daphne Cornelisse¹ Deepak Gopinath² Emily Sumner² Jonathan DeCastro² Guy Rosman² Eugene Vinitsky¹ Mark K. Ho¹

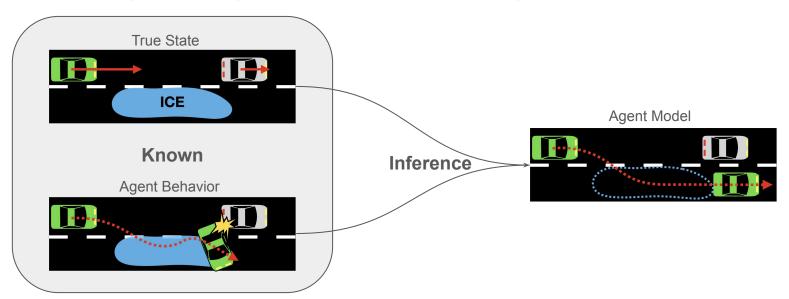

Motivation: Challenges for Models of Human Behavior


- Inverse Reinforcement Learning (IRL): Infer reward structures from expert behavior, then compute an optimal policy using the inferred rewards.
 (Ng and Russell, 2000)
 - Limitation: These approaches struggle when there is a mismatch between the expert's and learner's transition dynamics (Viano et al., 2020)



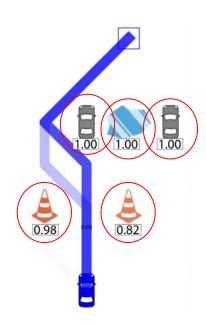
Motivation: Challenges for Models of Human Behavior

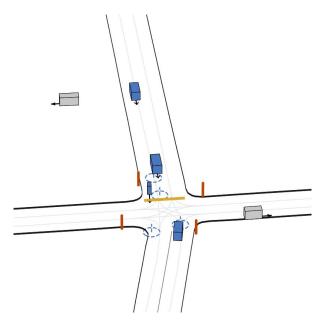
 <u>Cognitive Limitations</u>: Agents with limited cognitive capacities rely on simplified world models (different transition dynamics) to compute action plans.


Motivation: Challenges for Models of Human Behavior

- Humans are boundedly rational agents (Simon, 1957; Griffiths et al., 2015;
 Gershman et al., 2015)
 - Limited resources such as cognitive capacity, which include attention capabilities
- Models of human behavior should be able to capture systematic suboptimalities (such as limited attention) from behavior (Ho et al., 2022)

Attention Aware Inverse Planning (AAIP)

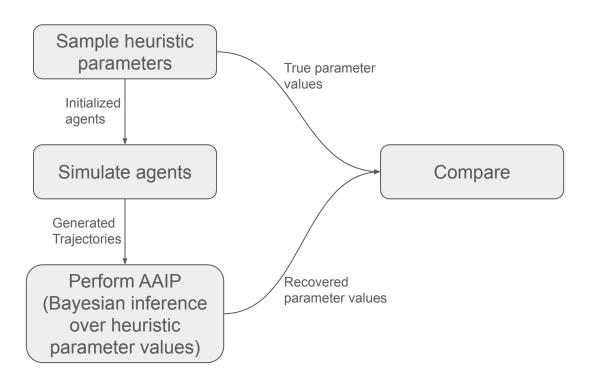

- An approach for estimating attentional heuristics of attention-limited agents, from observed behavior
 - o Inverting the planning process of an attention-limited agent


Simulators Used

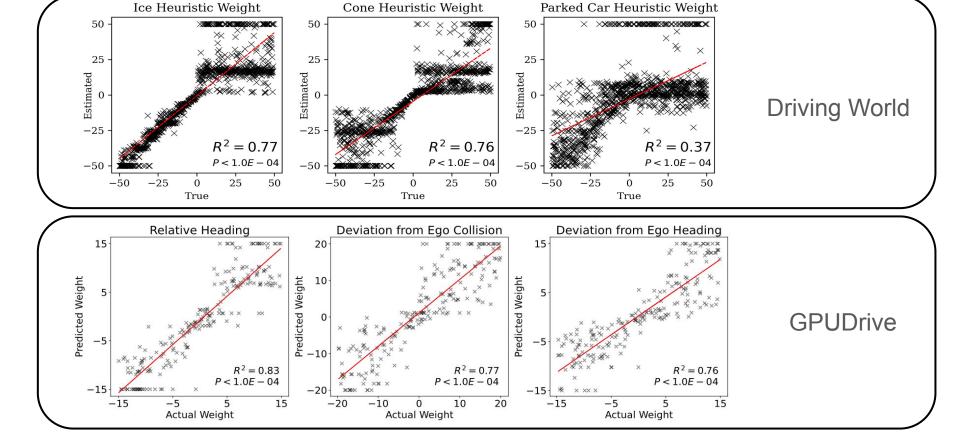
Properties:

- Simple MDP-based discrete environment dynamics
- Optimal policy obtained using value iteration

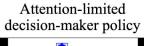
Driving World

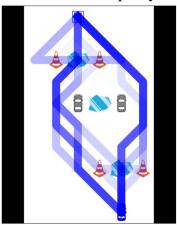


GPUDrive

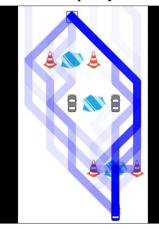

Properties:

- Complex and continuous environment dynamics
- Optimal policy obtained using deep reinforcement learning


Experiment Pipeline



Results



Results: AAIP vs IRL in DrivingWorld

Inferred IRL policy

	β	ε	$ ilde{r}_{ m Ice}$	$\tilde{r}_{\text{Ice+Cone}}$	γ	NLL↓
Noise	×	×				555
IRL	×	×	×			537

AAIP \times \times NA NA NA 26

Summary

- Formally introduce the Attention-Aware Inverse Planning problem
- Demonstrate how AAIP systematically differs from standard IRL
- Leverage deep reinforcement learning with computational cognitive modeling to AAIP problems
- Show that our approach can reliably and accurately capture behavior of attention-limited agents

TRI