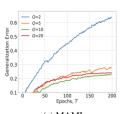
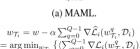
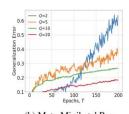


On the Stability and Generalization of Meta-Learning: the Impact of Inner-Levels






Wenjun Ding¹, Jingling Liu¹, Lixing Chen², Xiu Su¹, Tao Sun³, Fan Wu¹, Zhe Qu¹

¹Central South University ²Shanghai Jiao Tong University ³National University of Defense Technology

1. Observations on Generalization Error

$$w_{\mathcal{T}_i} = \operatorname{argmin}_{w_{\mathcal{T}_i}} \widehat{\mathcal{L}}_i(w_{\mathcal{T}_i}, \mathcal{D}_i) \\ + \frac{\lambda}{2} \|w_{\mathcal{T}_i} - w\|^2$$

It can be observed that, under two different inner-level optimization processes-gradient descent and proximal descent—the generalization error exhibits two distinct **dependencies** on the number of inner-task update steps Q.

2.Contributions

- We summarize six mainstream meta-learning algorithms and extract their structural features. Based on their inner-processes, we classify these algorithms into two frameworks: GDF and PDF, and develop two definitions of on-average stability, respectively. Accordingly, we establish a quantitative relationship between innerlevels and the generalization error in convex and non-convex settings.
- Our results reveal the influence of the inner-levels Q on generalization error. In particular, we identify a trade-off relationship in GDF, whereas PDF demonstrates a beneficial relationship in its generalization bound. The primary reason for this difference lies in the term introduced by the innerprocess. For example, in convex setting, the term for GDF, $O(\frac{TQ}{m_{eff}})$, increases with Q, whereas the term for PDF, $O(\frac{T}{mrQ})$, decreases with Q. These findings help to design a more efficient inner-process of meta-learning.
- Based on the generalization results of GDF and PDF, we further derive the generalization bounds for six meta-learning algorithms and analyze their implications. In general, note that the meta-objective F(w) plays a crucial role in reducing the generalization bound. Motivated by this, we propose a new **meta-objective** $F_{new}(w)$ and prove $F_{new}(w) < F(w)$, thereby enhancing generalization performance. Extensive experiments confirm the efficiency of the proposed objective.

3.Results

Algorithm 1 GDF and PDF

- 1: The set of datasets $\mathcal{S} = \{S_i\}_{i=1}^m$, outer iterations T, inner-levels Q, regulation λ . 2: Choose arbitrary initial point $w^0 \in W$;
- 3: **for** t = 0 **to** T 1 **do**
- Randomly choose the task i.
- Inner-Level: $w_{\mathcal{T}_{i},0}^{t} = w_{t}$
- for q = 0, 1, ..., Q 1 do

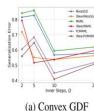
7:
$$w_{\mathcal{T}_i,q+1}^t = w_{\mathcal{T}_i,q}^t - \alpha \nabla \widehat{\mathcal{L}}_i(w_{\mathcal{T}_i,q}^t, S_i^{\text{tr}}) ;$$

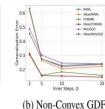
8:
$$w_{\mathcal{T}_i,q+1}^t = w_{\mathcal{T}_i,q}^t - \alpha \nabla \widehat{\mathcal{K}}_i(w_{\mathcal{T}_i,q}^t, S_i)$$
;

0:
$$w^{t+1} := w^t - \eta_t \nabla_w \widehat{\mathcal{L}}_i(w^t_{\mathcal{T}_i,Q}, S^{\text{ts}}_i)$$

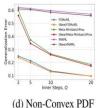
1:
$$w^{t+1} := w^t - \eta_t \lambda (w^t - w^t_{\mathcal{T}_i, Q})$$

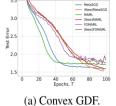
12: end for


13:
$$w^T$$
 and $\overline{w}^T := \frac{1}{T+1} \sum_{t=0}^T w^t$;


Anal	ysis.
------	-------

- In GDF, the first term of the bound increases with Q, worsening generalization, while the second term decreases with Q,indicating a trade-off.
- In PDF, the adverse effect of Oon the first term disappears, whereas its beneficial effect on the second term remains.


Frame.	Algorithm	Convex	Non-convex
GDF	MAML	$\mathcal{O}(\sum_{t=0}^{T-1} \eta_t (1 + \alpha L)^{Q-1} \frac{(6QG + Q^2 \alpha^2 G^2 \rho)}{m n^{\text{tr}}} + \frac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+(1+\alpha L)^{2(Q-1)}\frac{(6QG+Q^2\alpha^2G^2\rho)}{n^{\mathrm{tr}}}\right)\right)^{\frac{1}{c\gamma}}\left(F(w^0)T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$
	FOMAML	$\mathcal{O}(\sum_{t=0}^{T-1} \eta_t rac{2Qlpha LG}{mn^{ ext{tr}}} + rac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+\frac{2Q(1+\alpha L)^{Q}\alpha LG}{n^{\mathrm{tr}}}\right)\right)^{\frac{1}{c\gamma}}\left(F(w^{0})T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$
	Meta-SGD	$\mathcal{O}(\sum_{t=0}^{T-1} \eta_t (1 + \widehat{\alpha}_t L)^{Q-1} \frac{(6QG + Q^2 \widehat{\alpha}_t^2 G^2 \rho)}{m n^{\text{tr}}} + \frac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+(1+\widehat{\alpha}L)^{2(Q-1)}\frac{(6QG+Q^2\widehat{\alpha}^2G^2\rho)}{n^{\mathrm{tr}}}\right)\right)^{\frac{1}{c\gamma}}\left(F(w^0)T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$
PDF	iMAML	$\mathcal{O}(\sum_{t=0}^{T-1} rac{2L\eta_t(G^2+G)}{\lambda m n^{ ext{tr}}} + rac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+\frac{2L(G^2+G)}{(\lambda-L)n^{\mathrm{tr}}}\right)\right)^{\frac{1}{c\gamma}}\left(F(w^0)T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$
	Meta-MinibatchProx	$\mathcal{O}(\sum_{t=0}^{T-1} rac{2\eta_t \lambda}{mC^Q} + rac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+\frac{G(\lambda+L)}{C^Q}\right)\right)^{\frac{1}{c\gamma}}\left(F(w^0)T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$
	Fo-MuML	$\mathcal{O}(\sum_{t=0}^{T-1} \frac{2\eta_t G^2}{\lambda m n^{\text{tr}}} + \frac{\mathcal{Q}(F(w^0))}{m})$	$\mathcal{O}\left(\frac{1+\frac{1}{c\gamma}}{m}\left(1+\frac{2G^2}{(\lambda-L)n^{\mathrm{tr}}}\right)^{\frac{1}{c\gamma}}\left(F(w^0)T\right)^{\frac{c\gamma}{1+c\gamma}}\right)$


4.Experiment

