Balanced Conic Rectified Flow

Shin seong Kim

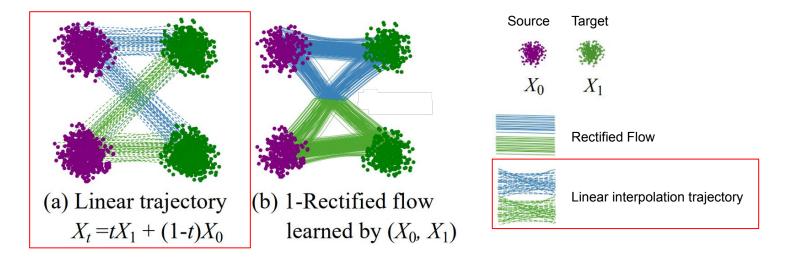
Mingi Kwon

Jaeseok Jeong

Youngjung Uh

Yonsei University

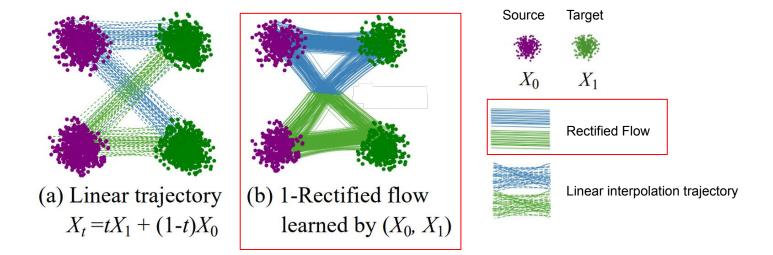
Preliminaries: Flow matching for generative modeling


For time-dependent vector field,

$$v:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$$

Vector field can construct time-dependent diffeomorphic map (flow) $\phi:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ defined via the ordinary differential equations (ODE) such that,

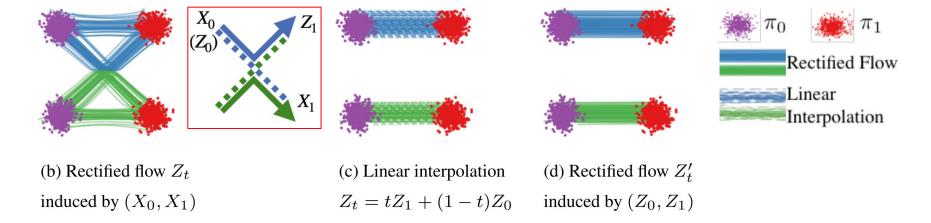
$$\frac{d}{dt}\phi_t(x) = v_t(\phi_t(x))$$
$$\phi_0(x) = x$$


Preliminaries: Rectified flow

Consider the linear interpolation path between source and target

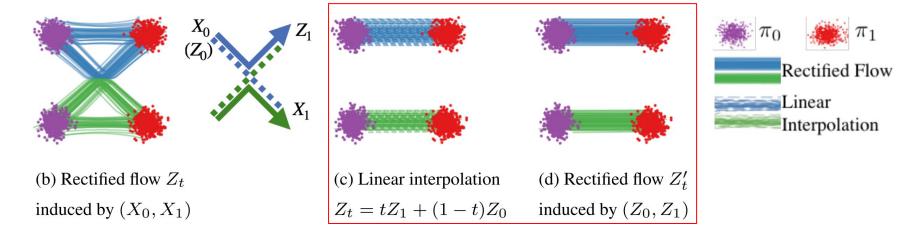
$$X_t = (1-t)X_0 + tX_1 \text{ for } t \in [0,1]$$

Preliminaries: Rectified flow


Use the time derivative of linear interpolation as supervision

$$\frac{dZ_t}{dt} = v_{\theta}(Z_t, t) := \frac{1}{t} (Z_t - \mathbb{E}[(X_1 - X_0) | X_t = Z_t])$$

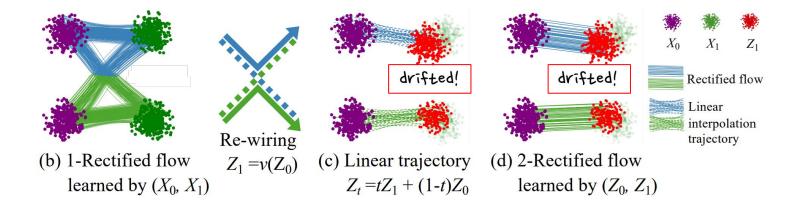
Train the velocity field using an ODE neural network


$$\arg\min_{\theta} \mathbb{E} \left[\|X_1 - X_0 - v(tX_1 + (1-t)X_0, t)\|^2 \right]$$

Preliminaries: Reflow process

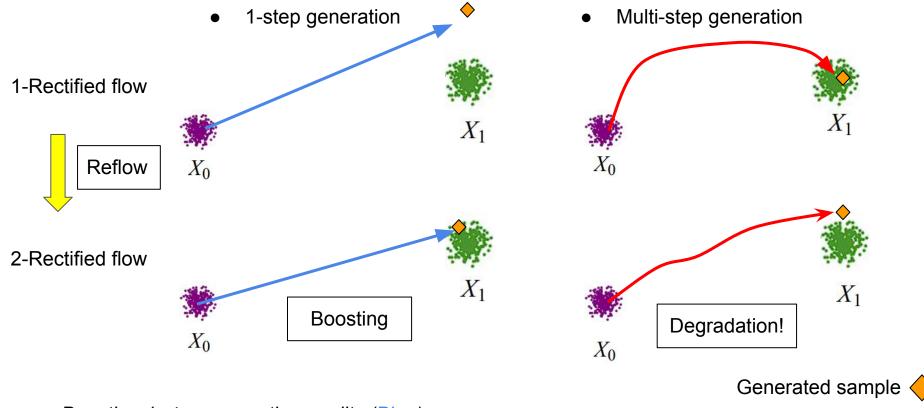
Generate Fake pairs $(Z_{0,F},Z_{1,F})$ using 1-Rectified models $v_{ heta}$

Preliminaries: Reflow process



Generate Fake pairs $(Z_{0,F},Z_{1,F})$ using 1-Rectified models v_{θ}

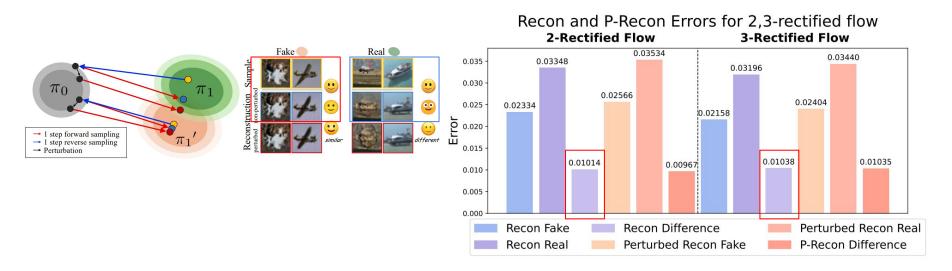
Fine tuning with 1-Rectified models using fake pairs


$$\arg\min_{\alpha} \mathbb{E} \left[\| Z_{1,F} - Z_{0,F} - v_{\theta} (tZ_{1,F} + (1-t)Z_{0,F}) \|^{2} \right],$$

Original Reflow process drift target distribution

 Since 1-Rectified Flow cannot perfectly match the target distribution, Reflow using only fake pairs becomes biased toward generated samples.

Distribution drift degrades the quality of full-step generation

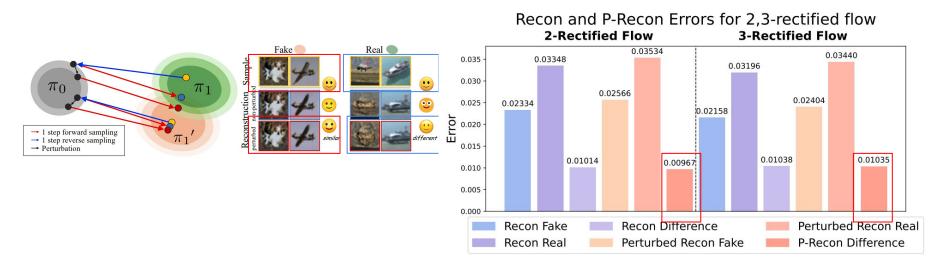


- Boosting 1-step generation quality (Blue)
- Degradation Multi-step generation quality (Red)

Drift of target distribution in the original Reflow process

Reconstruction Error

$$L_2^{\text{recon}}(X) = \mathbb{E}_{x \sim X} \left[\|x - v(v^{-1}(x))\|_2 \right]$$



 Experimental results show a clear discrepancy in reconstruction and perturbed reconstruction errors between real and generated images

Drift of target distribution in the original Reflow process

Perturbed Reconstruction Error

$$L_2^{\text{p-recon}}(X,\varepsilon) = \mathbb{E}_{x \sim X, z \sim \pi_0} \|x - v(v^{-1}(x) + \varepsilon z)\|_2,$$

 Experimental results show a clear discrepancy in reconstruction and perturbed reconstruction errors between real and generated images

Drift of target distribution in the original Reflow process

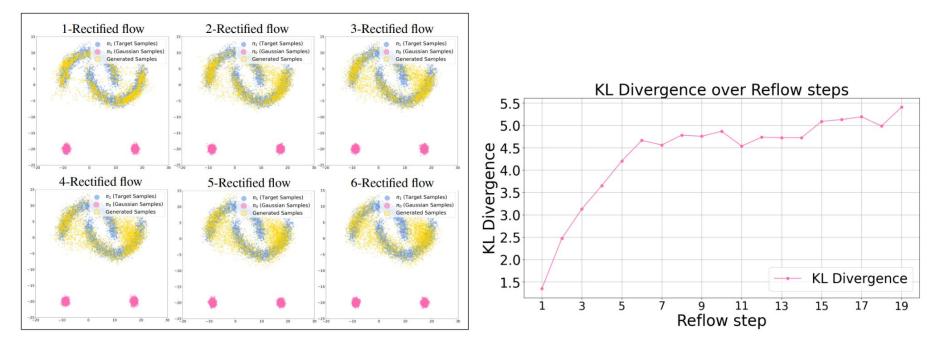
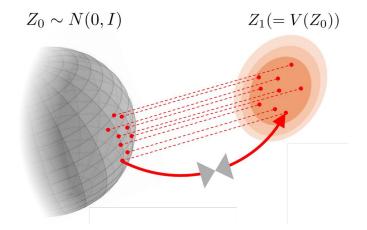
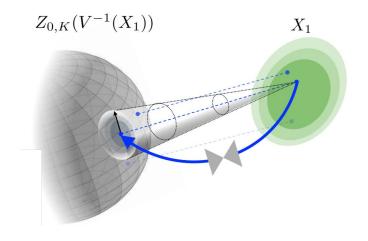



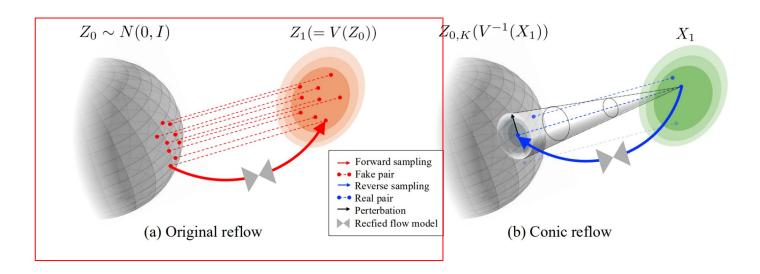
Figure 3: (a) As reflow steps increase, generated samples diverge from the target distribution. (b) This drift is further evidenced by the rising KL divergence from the real data distribution.

Fake pair and Real Pair


Generated Image

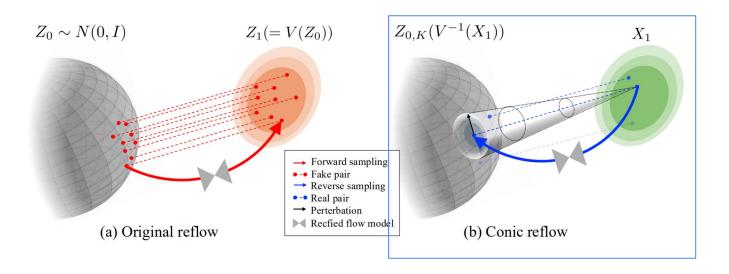
Fake Pair

$$(Z_0, v_{\theta}(Z_0)) := (Z_{0,F}, Z_{1,F})$$


Real Image

Real Pair

$$(Z_{0,R}, X_1) := (v^{-1}(X_1), X_1)$$


Methods - Conic Reflow

Original reflow for Fake pairs

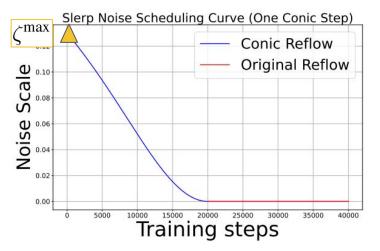
$$\arg\min_{\theta} \mathbb{E} \left[\| Z_{1,F} - Z_{0,F} - v_{\theta} (tZ_{1,F} + (1-t)Z_{0,F}) \|^2 \right]$$

Methods - Conic Reflow

Perturbed based supervision for Real pairs

$$\hat{\theta} = \arg\min_{\theta} \int_{0}^{1} \mathbb{E} \left[w_{t} \| X_{1} - \operatorname{slerp}(Z_{0,R}, \epsilon, \zeta) - v_{\theta} \left(\operatorname{Conic}(X_{1}, \epsilon, \zeta, t) \right) \|^{2} \right] dt$$

where Conic operator defined as,


 $\operatorname{Conic}(X_1,\epsilon,\zeta,t)=tX_1+(1-t)\operatorname{slerp}(Z_{0,R},\epsilon,\zeta),\ \epsilon\sim\mathcal{N}(0,I),\ \zeta$: Perturbation intensity via Slerp

Maximum perturbation intensity and noise schedule

Adaptively compute the maximum perturbation intensity

$$\zeta^{\max} := \max_{\zeta \in (0,0.5]} \ \underset{z \sim Z_{1,F}}{\mathbb{E}} \left[\| v_{\theta} \left(\text{Slerp}(z_{0,R}, \epsilon, \zeta) \right) - x \|_{2} - \| v_{\theta} \left(\text{Slerp}(z_{0,F}, \epsilon, \zeta) \right) - z \|_{2} \right]$$

where $\epsilon \sim \mathcal{N}(0, I)$, with $z_{0,R} = v_{\theta}^{-1}(x)$ and $z_{0,F} = v_{\theta}^{-1}(z_{1,F})$

The perturbation intensity progressively decrease during training

$$\zeta(t') := \zeta^{\max} \cdot \frac{2t'^2}{1+t'^2}, \quad t' \in [0,1]$$

Comparison with baselines

Method	NFE (\lambda)	IS (↑)	FID (\lambda)
One-Step Generation (Euler solver, N=1)			
1-Rectified Flow	1	1.13 (9.08)	378 (6.18)
2-Rectified Flow			
Original (+Distill)	1	8.08 (9.01)	12.21 (4.85)
Ours (+Distill)	1	8.79 (9.11)	5.98 (4.16)
$Rf++^{\dagger}[24]$	1	8.87	4.43
$Rf++^{\dagger}(+ours)$	1	8.87	4.22
3-Rectified Flow			
Original (+Distill)	1	8.47 (8.79)	8.15 (5.21)
Ours (+Distill)	1	8.84 (8.96)	5.48 (4.68)
Full Simulation (Runge–Kutta (RK45), Adaptive N)			
1-Rectified Flow	127	9.60	2.58
2-Rectified Flow			
Original	110	9.24	3.36
Ours	104	9.30	3.24
3-Rectified Flow			
Original	104	9.01	3.96
Ours	98	9.14	3.70

Table 1: One-step and full-simulation comparison of 2,3 Rectified Flows on CIFAR-10.

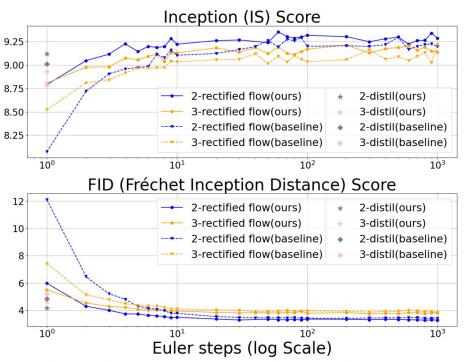
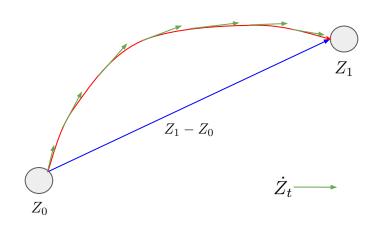
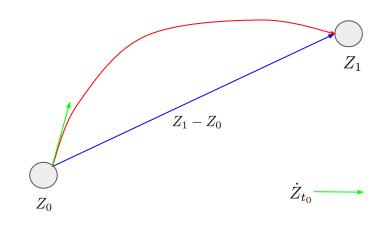
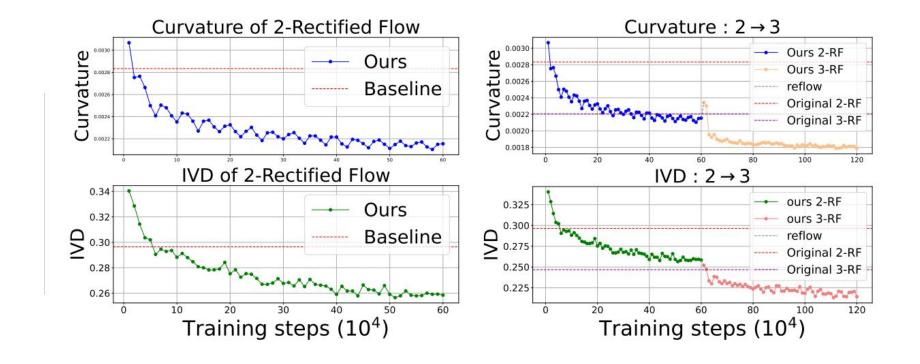



Figure 6: CIFAR-10 generation quality across Euler steps.


Curvature and Initial Velocity Delta (IVD)

Curvature


$$S(\mathbf{Z}) = \int_0^1 \mathbb{E}\left[\left\| (Z_1 - Z_0) - \dot{Z}_t \right\|^2 \right] dt$$

• Initial Velocity Delta (IVD)

$$IVD(\mathbf{Z},t_0) = \mathbb{E}\left[\left\|(Z_1-Z_0) - \dot{Z}_{t_0}
ight\|^2
ight]$$

Straightness and Initial Velocity Delta (IVD)

Our methods reduces rap betweed real and fake image during reflow process

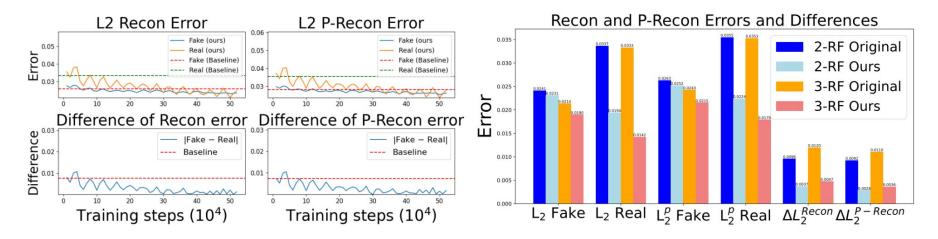


Figure 7: Reconstruction and perturbed reconstruction error across training iterations.

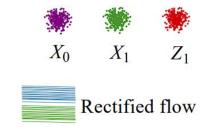

High resolution dataset (Lsun-Bedroom 256x256)

Figure 8: Visual and quantitative comparison on LSUN. Left: 2-row layout showing original (top) and ours (bottom) for each solver (1-step, 2-step, RK). Right: evaluation metrics.

Our method realigns the drift in 2-Rectified Flow

Our method realigns the drift in 2-Rectified Flow

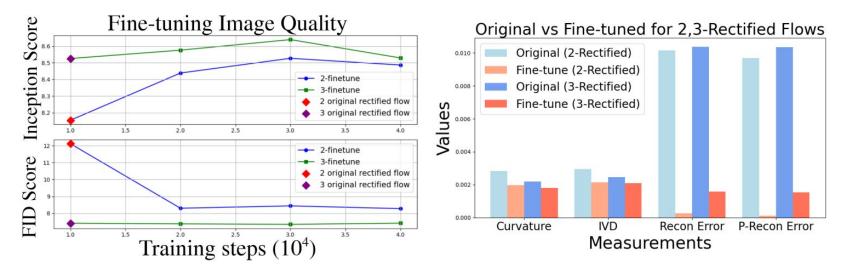


Figure A2: (a) Comparison of image quality between the original rectified model and our fine-tuned model across training steps (**left**). (b) Comparison of measurements for original and fine-tuned models for 2- and 3-rectified flows (**right**).

Balanced Conic Rectified flow

- Mitigated distribution drift of the target distribution during Reflow process
- Achieves better generation quality than the original Reflow process even with a small number of fake pairs.
- Produces a straighter solution trajectory than original 2-Rectified flow.