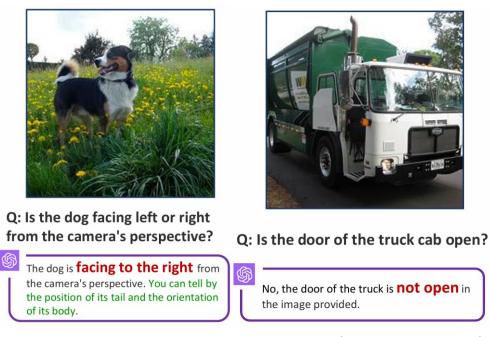
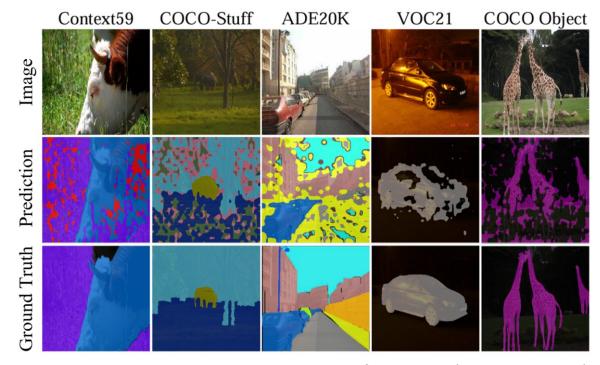


un²CLIP: Improving CLIP's Visual Detail Capturing Ability via Inverting unCLIP


Yinqi Li^{1,2}, Jiahe Zhao^{1,2}, Hong Chang^{1,2}, Ruibing Hou¹, Shiguang Shan^{1,2}, Xilin Chen^{1,2}

¹Institute of Computing Technology, Chinese Academy of Sciences, China

²University of Chinese Academy of Sciences, China


Background

CLIP falls short in capturing visual details

(Tong et al., 2024)

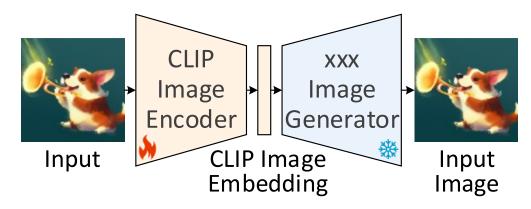
Multimodal Understanding

Result of ClearCLIP (Lan et al., 2024)

Open-vocabulary Segmentation

High-Level Idea

- Refining Existing CLIP Models with Image-Only Data
 - Challenging to acquire high-quality data (e.g., region-text pairs)
 - Re-training CLIP models is costly

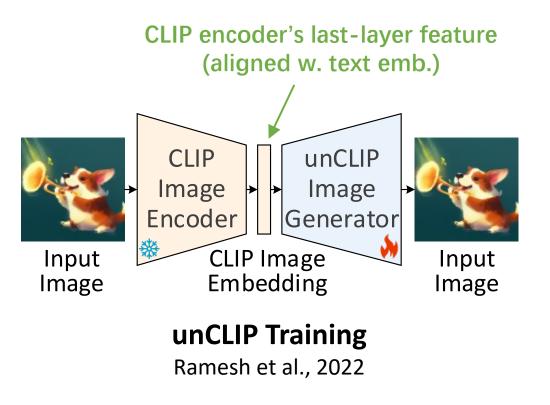

High-Level Idea

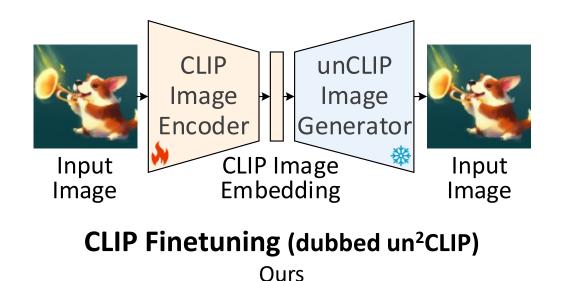
- Refining Existing CLIP Models with Image-Only Data
 - Challenging to acquire high-quality data (e.g., region-text pairs)
 - Re-training CLIP models is costly
- Harnessing the Capabilities of Generative Models
 - Trained to learn the full image data distribution
 - Capture fine-grained visual details better than discriminative models (e.g., CLIP)

High-Level Idea

- Refining Existing CLIP Models with Image-Only Data
- Harnessing the Capabilities of Generative Models

Preliminary Framework

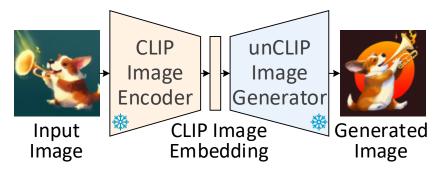



CLIP Finetuning

 General solutions may break the image-text alignment property of CLIP

Method

- Utilize the unCLIP Generator (Ramesh et al., 2022) as the "Decoder" Module
- Freeze the Generator During CLIP Finetuning



- Qualitative Results
- CLIP-Blind Pair (MMVP-VLM) Evaluation
- Dense Vision-Language Inference Evaluation
- Multimodal Large Language Model Evaluation
- Zero-Shot Classification and Retrieval

Qualitative Results

unCLIP Sampling

CLIP-Blind Pair (MMVP-VLM) Evaluation

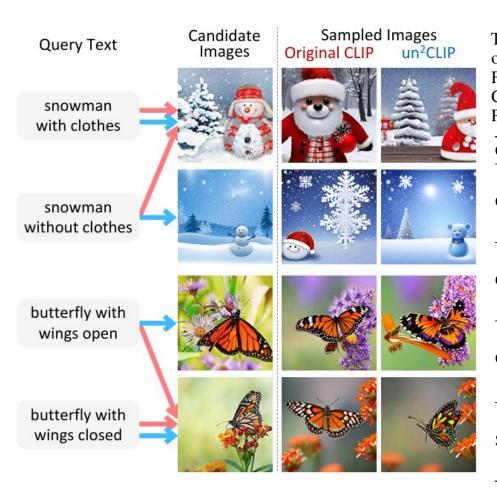
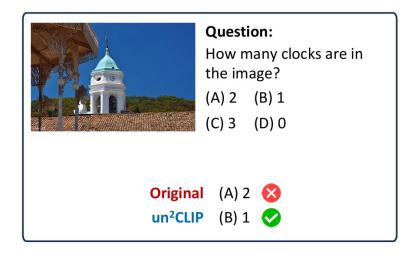
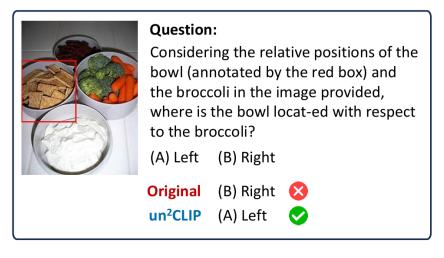


Table 1: MMVP-VLM benchmark evaluation. The benchmark contains 9 visual patterns that original CLIP models often misinterpret: ②: Orientation and Direction, Q: Presence of Specific Features, S: State and Condition, 13: Quantity and Count, 9: Positional and Relational Context, Octobrand Appearance, S: Structural and Physical Characteristics, A: Texts, O: Viewpoint and Perspective. † denotes our reproduced results using official codes correspondingly.

CLIP Model	Resol.	#Params	Method	0	Q	3	13	•	•	⊅ °	Α	0	Avg
			Original	Original 13.3 13.3 20.0 20.0 13.3	13.3	53.3	20.0	6.7	13.3	19.3			
OpenAI ViT-L-14	224^{2}	427.6M	DIVA	13.3	20.0	40.0	6.7			46.7	20.0	13.3	25.9
OpenAi vii-L-14	224	427.0W	GenHancer	13.3	33.3	33.3	3.3 20.0 6.7	73.3	46.7	20.0	40.0	31.9	
			un ² CLIP	0.0	33.3	46.7	26.7	13.3	80.0	40.0	20.0	33.3	32.6
			Original	0.0	20.0	40.0	20.0	6.7	3.3 46.7	33.3	6.7	33.3	20.0
OpenAI ViT-L-14	336^{2}	427.9M	DIVA	26.7	20.0	33.3	13.3	13.3		26.7	6.7	40.0	25.2
OpenAl VII-L-14	330-	427.9W	GenHancer	6.7	20.0	33.3	20.0	6.7		53.3	26.7	26.7	29.6
			un ² CLIP	6.7	33.3	46.7	13.3	13.3		40.0	20.0	20.0	30.4
			Original	6.7	13.3	53.3	26.7	6.7	73.3	40.0	13.3	26.7	28.9
OpenCLIP ViT-H-14	2242	986.1M	DIVA^{\dagger}	13.3	13.3	53.3	26.7	6.7	73.3	46.7	13.3	26.7	30.4
Openelli vii-ii-i-	224	700.11VI	GenHancer [†]	13.3	6.7	46.7	20.0 33.3 80	80.0	26.7	40.0	33.3	33.3	
			un ² CLIP	26.7	13.3	53.3	20.0	33.3	86.7	46.7	13.3	33.3	36.3
			Original	20.0	26.7	60.0	33.3	13.3	66.7	33.3	26.7	53.3	37.0
SigLIP ViT-SO-14	384^{2}	878.0M	DIVA	26.7	33.3	53.3	26.7	7 13.3	80.0	40.0	26.7	46.7	38.5
51gLif VII-50-14	304	0/0.01	GenHancer	26.7	20.0	66.7	33.3	13.3	86.7	40.0	26.7	46.7	40.0
			un ² CLIP	20.0	20.0	60.0	46.7	26.7	73.3	40.0	26.7	60.0	41.5

Dense Vision-Language Inference Evaluation


Table 2: **Open-vocabulary semantic segmentation quantitative comparison.** Results of DIVA and GenHancer are obtained using official checkpoints. The CLIP backbone is OpenAI ViT-L-14@336.


Segmentation	CLIP-Improve.	Wit	hout bac	ckgroui	nd clas	s	With a b	With a background class		
Method	Method	VOC20	Ctx59	Stuff	City	ADE	VOC21	Ctx60	Object	Average
CLIP	Original	11.7	3.4	1.7	2.5	0.9	7.7	2.9	3.3	4.3
	DIVA	12.0	3.4	1.7	2.5	1.0	7.7	2.9	3.3	4.3
	GenHancer	8.4	2.9	1.3	2.7	0.7	4.6	2.5	1.7	3.1
	un ² CLIP	17.3	5.1	2.6	3.8	1.3	9.3	4.3	4.3	6.0
MaskCLIP	Original	24.7	10.1	7.3	10.3	6.1	21.8	9.2	12.1	12.7
	DIVA	25.7	10.4	7.6	10.4	6.3	22.4	9.5	12.6	13.1
	GenHancer	13.5	6.4	3.4	9.2	3.7	12.3	5.9	4.9	7.4
	un ² CLIP	30.0	12.9	8.9	13.1	7.5	25.2	11.6	13.5	15.3
	Original	37.3	12.7	8.5	10.2	4.6	28.7	11.9	14.9	16.1
SCLIP	DIVA	37.7	12.8	8.5	10.3	4.6	28.9	11.9	15.0	16.2
SCLIP	GenHancer	21.0	7.7	3.6	6.8	2.2	15.1	7.0	5.3	8.6
	un ² CLIP	53.8	19.5	12.0	16.1	6.9	38.6	17.9	19.3	23.0
ClearCLIP	Original	72.4	26.0	18.1	22.8	14.2	42.6	23.2	27.1	30.8
	DIVA	72.3	25.9	18.1	22.7	14.0	42.6	23.2	27.1	30.7
	GenHancer	52.1	22.9	11.8	17.1	10.3	24.2	20.0	10.2	21.1
	un ² CLIP	76.5	30.5	20.6	26.4	16.0	47.6	27.3	29.6	34.3

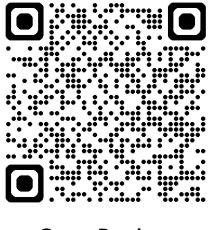
Multimodal Large Language Model Evaluation

Table 3: **MLLM benchmark evaluation.** Best and second best results are highlighted in **bold** and <u>underline</u>. Results on NaturalBench follow the official evaluation protocol [50], which differs from that in GenHancer [43], resulting in some missing entries. Baseline numbers are taken from [43].

	CLIP	Vision-centric Benchmarks								General Benchmarks				
LLM		MMVP	NaturalBench [50]			[50]	CV-Bench	2D [12]	CV-Bench	POPE [51]		SciQA-	Hallusion	
		[<mark>9</mark>]	Acc	Q-Acc	I-Acc	G-Acc	ADE20K	COCO	3D [12]	rand pop a	dv	IMG[52]	Avg. [53]	
Vicuna-7B	Original	24.7	67.3	37.7	43.8	12.7	49.6	60.9	58.7	87.3 86.1 8	4.2	66.8	27.6	
	DIVA	31.3					51.3	63.4	60.2	87.9 87.0 8	4.6	66.3	28.6	
	GenHancer	30.7	-	-	-	-	52.9	63.6	63.2	88.1 86.7 8	4.6	66.5	28.4	
	un ² CLIP	31.3	68.7	40.0	45.9	15.1	53.9	65.1	<u>61.2</u>	<u>88.0</u> 87.4 8	5.4	68.4	28.4	

Zero-Shot Classification and Retrieval

- Classification tasks generally favor representations that emphasize dominant foreground semantics
- Contrast with the main objective of our work, which is to enhance CLIP's ability to capture visual details as much as possible


Method		Z	Zero-sho	t Image (Classificati	on		Image-to Retrieva		Text-to-Image Retrieval@5		
	IN-1K	C-10	C-100	Cal-101	SUN397	Aircraft	Cars	Flickr30K	COCO	Flickr30K	COCO	
Original	75.5	95.6	75.9	86.7	67.6	31.7	77.9	97.3	79.4	87.3	61.0	
DIVA	75.5	95.5	76.3	87.1	67.5	31.6	78.0	97.3	79.7	86.9	61.0	
GenHancer	40.2	77.5	44.2	79.3	42.4	7.2	21.0	87.2	61.7	81.6	51.0	
un ² CLIP	62.4	89.0	65.6	86.8	59.2	22.0	63.3	96.4	77.6	90.1	65.5	

Summary

- Finding: unCLIP provides a suitable framework for improving CLIP
- **Proposed method:** un²CLIP finetunes CLIP image encoder via inverting unCLIP
- Experiments: Consistent improvements across CLIP-blind pair, dense vision-language inference, and MLLM evaluations

