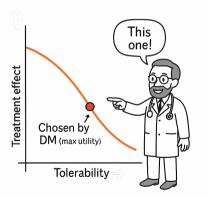


# Bayesian Optimization with Preference Exploration using a Monotonic Neural Network Ensemble

Hanyang Wang <sup>1</sup> Juergen Branke <sup>1</sup> Matthias Poloczek <sup>2</sup>

 $^{1}$ University of Warwick


 $^2$ Amazon



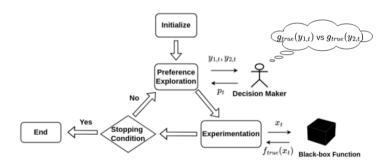
### Multi-objective Bayesian Optimziation with Posterior Selection



In Multi-objective Bayesian Optimization with Posterior Selection, a Decision Maker chooses the point that maximizes their posterior expected utility.





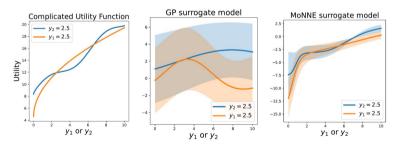

#### Bayesian Optimization with Preference Exploration



The goal is to find

$$x^* = \arg\max_{x \in \mathcal{X}} g_{\mathsf{true}}(f_{\mathsf{true}}(x)),$$

where  $f_{\mathsf{true}}: \mathbb{R}^d \to \mathbb{R}^k$  maps inputs to objectives, and  $g_{\mathsf{true}}: \mathbb{R}^k \to \mathbb{R}$  denotes the decision maker's utility.

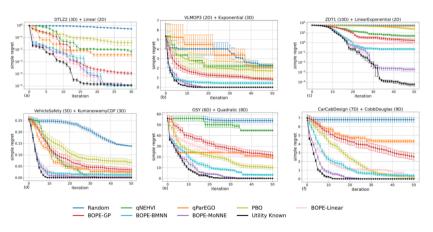





#### Monotonicity of Utility Function



- ► The utility function is typically monotonically increasing: For example, both a higher treatment effect and a higher tolerability indicate a better drug.
- Standard GP models ignore this monotonicity.
- ▶ We propose a model called **Monotonic Neural Network Ensemble** (MoNNE) that exploits this property to improve BO performance.




**Fig. 1:** Models are trained with pairwise comparisons.



#### **Experimental Results**





**Fig. 2:** BOPE-MoNNE Achieves the Best Performance Among All Benchmark Algorithms.





# By incorporating monotonicity information into the surrogate model, our algorithm achieves superior performance.

For more details, visit our poster:

Location: Exhibit Hall C, D, E

**Time:** Fri, Dec 5 12:30–3:30 a.m. GMT





## Thanks!

