

Heterogeneous Graph Transformers for Simultaneous Mobile Multi-Robot Task Allocation and Scheduling under Temporal Constraints

Batuhan Altundas, Shengkang Chen, Shivika Singh, Shivangi Deo,

Minwoo Cho and Matthew Gombolay

CORE Robotics Lab

Why Multi-Agent Teams are important?

Warehouse Management

Logistics

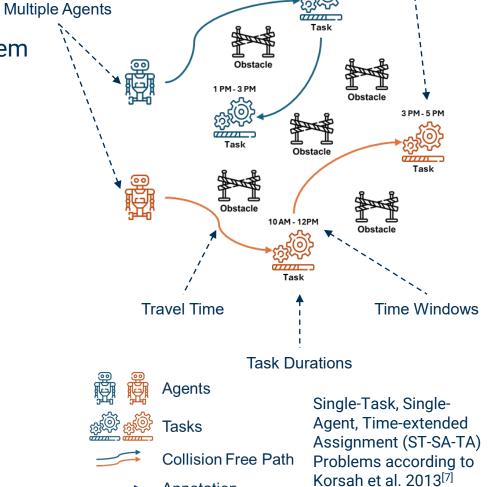
Manufacturing

Operations

Multi-Agent Coordination as a Task Allocation and Scheduling Problem Multiple Agents

- Task Allocation and Scheduling is an NP-Hard Optimization Problem
- Heuristics are suboptimal in large scales
- Metaheuristics leverage search and are compute intensive
- Prior Learning Based Approaches:
 - · Subset of the Problems
 - Subset of Constraints
 - Utilize Sequential Assignment

	Task Duration	Travel Time
Min-Max mTSP (Hu et al. 2020) [1]		✓
GPN (Ma et al. 2019) [2]		✓
ALMA (lqbal et al 2022) [3]	✓	✓
HomGNN (Wang et al. 2019) [4]	✓	
ScheduleNet (Wang et al. 2022) [5]	✓	
HybridNET (Wang et al. 2022) [6]	✓	
Ours	✓	✓



Annotation

[2] Ma, Qiang, Suwen Ge, Danyang He, Darshan D. Thaker and Iddo Drori. "Combinatorial Optimization by Graph Pointer Networks and Hierarchical Reinforcement Learning," ArXiv abs/1911.04936, 2019. [2] Mah. J. Contalon, D. 8, Sh. E. (2003). Men. Hierarchical Reinforcement Learning for compacting with great backs. Advances in source information researching and account of the property of the property

ioj iquari, S., Costales, R., & oriar, F. (2022). Alinat, riteria dinical retaining for composite montragent dass. Avorances in neural minimum dinical metal control and the second state of the second state

Multiple Tasks

11 AM - 2PN

^[5] Zheyuan Wang, Chen Liu, and Matthew Gombolay. Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints. Autonomous Robots, 46 (1):249–268, January 2022. ISSN 1573-7527. doi: 10.1007/s10514-021-09997-2

^{10.1109/}IROS47612.2022.998174

T/T G. A. Korsah, A. Stentz, and M. B. Dias, "A comprehensive taxonomy for multi-robot task allocation," The International Journal of Robotics Research, vol. 32, no. 12, pp. 1495–1512, Oct. 2013, doi: 10.1177/0278364913496484.

Contributions

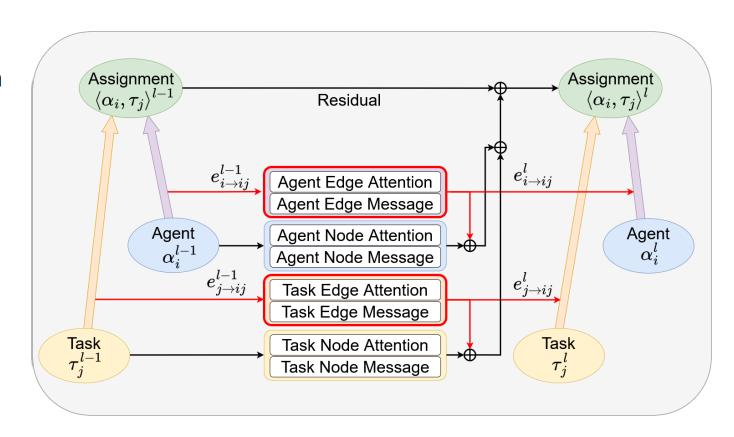
- 1. A Method of representing TARGETNET, a Heterogenous Mobile Multi-Agent Task Allocation and Scheduling using a relational Graph Model.
- 2. Integrate Edge Features and Attention into state-of-the-art Heterogenous Graph Transformers for the use of Optimization Problems.
- 3. Simultaneous Decision-Making using Graph-based Networks with Edge Features that allow for:
 - 13% better than the best performing metaheuristics in less than 1% of the time
 - 36% better performance than state-of-the-art GNN-based schedules that use Sequential Decision-Making in 5% the time in 10 agent-20 task problems
 - 232% better than partial schedules generated by exact solvers after 12 hours in less than 12 seconds, in 40 agent-200 task problems

Integrating Relational Information through Edge Attention

Nodes store unique information Edges store relational information

 e.g. Heterogenous Travel **Duration from current location** of Agent i to the location of Task j.

We expand on prior work to allow for Edge Attention and Message Passing in Heterogenous Graph Transformers



 $\mathsf{Update}\;\mathsf{Node}\;\!: H^l[t] \underset{\forall s \in N(t)}{\longleftarrow} Aggregate \big(Att_N(s,t) \cdot Msg_N(s) + Att_E(e,t) \cdot Msg_E(e) \big)$ $\forall e \in E(s,t)$

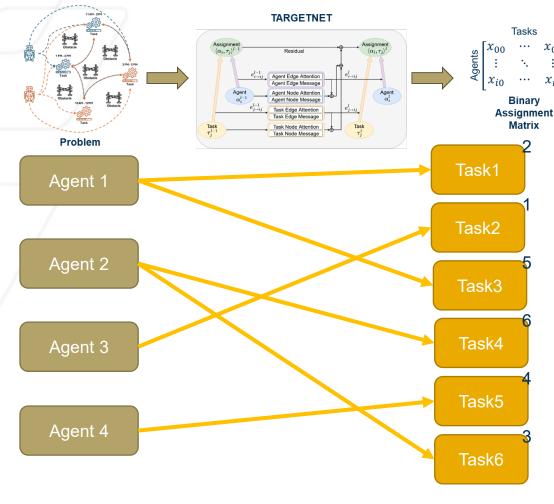
 $\mathsf{Update}\;\mathsf{Edge} \colon H^l[e] \underset{\forall e \in E(s,t)}{\longleftarrow} Aggregate\left(Att_N^E(s,t) \cdot Msg_N^E(s) + Att_E^E(e,t) \cdot Msg_E^E(e)\right)$

Node Features of Agent *i* for Layer *l*

Node Features of Task j for Layer l

Node Features of Assignment of Agent i to Task j for Layer l

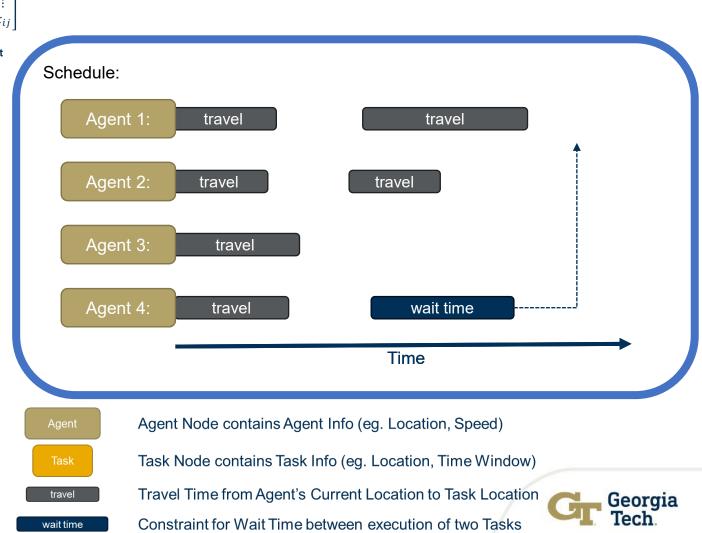
Simultaneous Decision Making



Step 1: Assign an Agent to each Task.

Step 2: Determine the Order of Tasks

Step 3: Construct and execute Schedule



 a_t

Agent

Environment

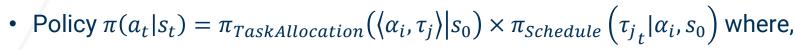
 R_t

 R_{t+1}

 S_{t+1}

Policy Training using REINFORCE^[1]

For the Task Allocation and Scheduling of |T| tasks to |A| agents:



- $\pi_{Schedule}$ is the Scheduling policy. Determines order of Tasks.
- Combined generates a full schedule $\{a_t\}_{t\in\{1:|T|\}}$ where $a_t=\left\langle \alpha_i,\tau_j\right\rangle_t$ is the assignment of Agent, α_i , to Task, τ_i , at time step, t.

$$\text{Reward: } R_t = \begin{cases} \left(1 - \frac{t_{ms}}{t_{max}}\right) + \sum_{i=1}^T \mathbb{1}_{feasible}(s_i, a_i) \text{ , if } t = t_{max} \\ +1 & \text{, if feasible} \\ -1 & \text{, otherwise} \end{cases}$$

Task Allocation and Scheduling Policy outputs a probability mass function: $\pi(a_t|s_t)$

$$Loss_{Policy} = \left(\sum_{t=1}^{|T|} \gamma^{|T|-t} R_t\right) \log \pi(a_t|s_t)$$

Experiments

Training:

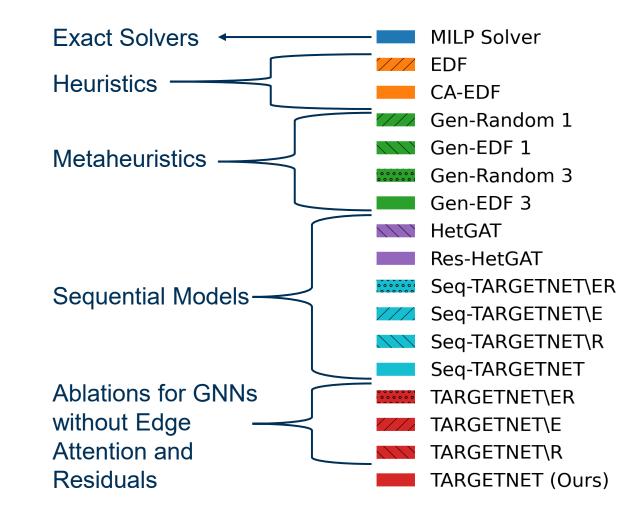
200 Small-Scale Problems

Testing on:

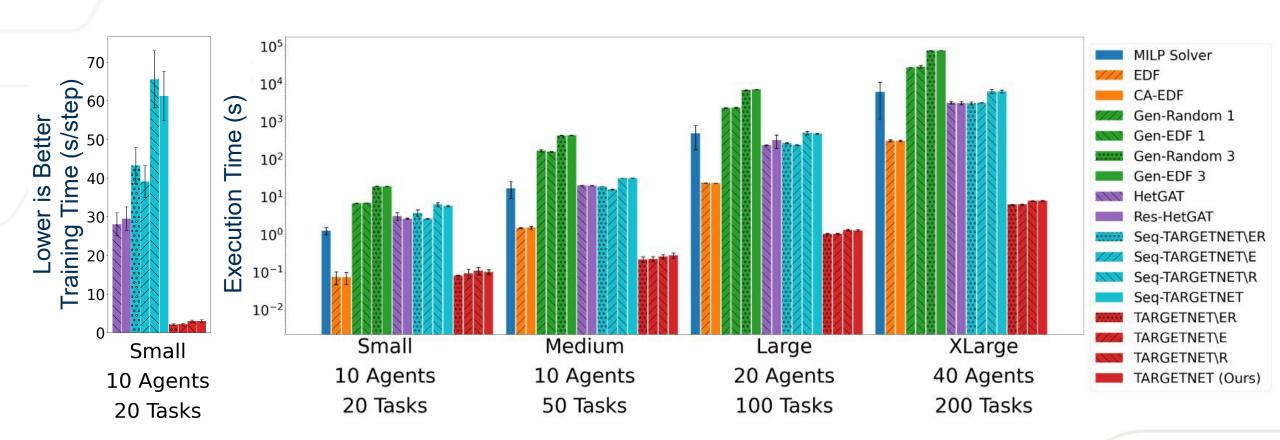
- Small: 10 Agents, 20 Tasks
- Medium: 10 Agents, 50 Tasks
- Large: 20 Agents, 100 Tasks
- Xlarge: 40 Agents, 200 Tasks

Metrics:

- Schedule Quality Relative to the MILP Solver = $\frac{R_{policy}}{R_{MILP}} \times 100\%$
- Feasibility Percentage = $\frac{Num\ Feasible}{Num\ Task} \times 100\%$
- Training and Computation time

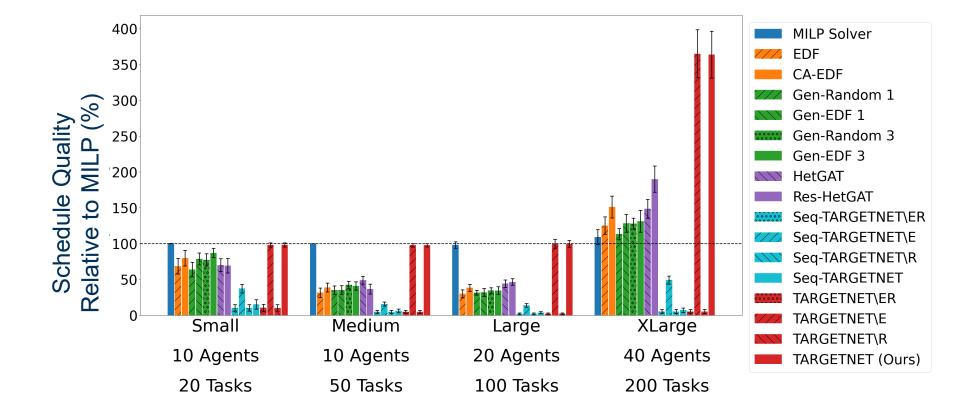


TARGETNET Learns Faster, and Executes Faster

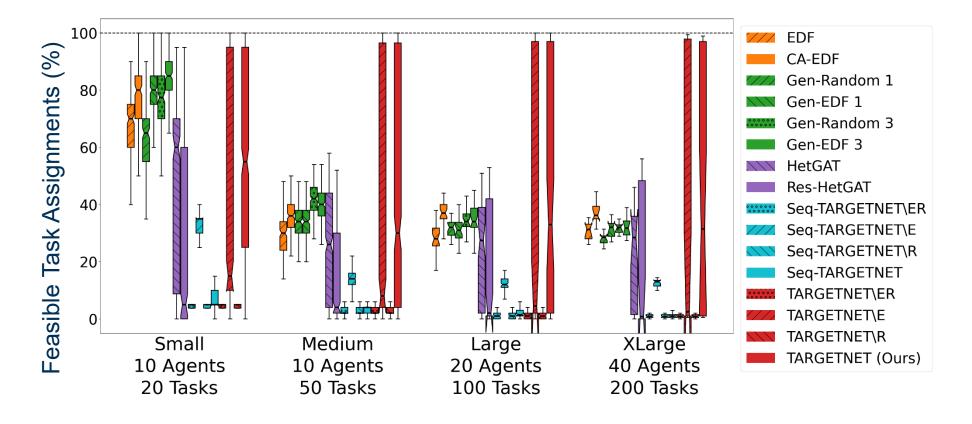


Lower is Better

TARGETNET Generates Schedules of Higher Quality than Baselines



TARGETNET Produces more feasible schedules than baselines



Contributions

We present a model that can learn to approximate a scheduling policy that in 1 pass can produce a schedule.

We do this through representing the problem in a Graph Model, before passing it through Heterogenous Graph Transformers with Edge Attention.

Naval Research Laboratory (NRL) grant numbers N00173-21-1-G009 and N00173-25-1-0050

Office of Naval Research (ONR) under grant number N00014-23-1-2887

