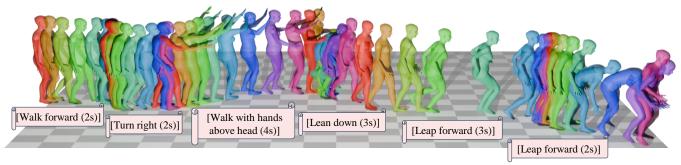


Deep Compositional Phase Diffusion for Long Motion Sequence Generation

Ho Yin Au, Jie Chen, Junkun Jiang, Jingyu Xiang
Department of Computer Science, Hong Kong Baptist University

Intro: Long-term Compositional Generation

- Human Motion Generation
 - Short duration motion clip of a single semantics
- Long-term Compositional Generation
 - Multiple sequentially connected clips, each with single semantics.
 - Each clip is aligned to the semantic condition
 - Transitions between clips are smooth and natural
 - Existing models <u>struggle to synthesize</u> natural and seamless transitions



Related Works

- TEACH (3DV 2022)
 - Autoregressively synthesizes motion clips, having minor discontinuities between clips
 - Blending transitions are generated using spherical linear interpolation (SLERP)
- Limitation
 - Blending transitions often appear <u>unrealistic</u>, reducing overall motion realism

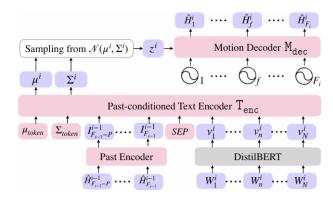
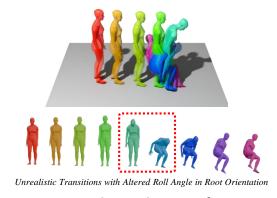


Illustration of TEACH's autoregressive variational encoder-decoder architecture



Result visualization of [walk(2.4s), sit down(3.6s)]

Athanasiou et al., Teach: Temporal action composition for 3d humans. In 3DV, pp. 414–423, 2022.

Related Works

- PriorMDM (ICLR 2024)
 - Synthesizes all motion clips in parallel, resulting in significant discontinuities between clips
 - Blending transitions are generated using the human motion diffusion model (MDM)
- Limitation
 - <u>Substantial discontinuities</u> between clips, and generated transitions fail to smooth them

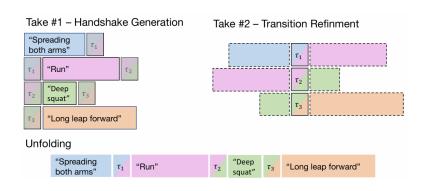
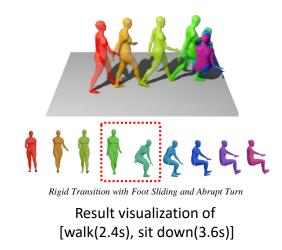


Illustration of priorMDM's DoubleTake algorithm



• Shafir et al., Human motion diffusion as a generative prior, ICLR, 2024.

Related Works

- DeepPhase (SIGGRAPH 2022)
 - Encode motion into the periodic latent space using fixed-length convolutions and FFT
 - Excels at motion extrapolation and inbetweening, effectively capturing motion dynamics
- Limitation
 - Results in variable numbers of phase latents, more <u>difficult to learn text-motion alignment</u>.

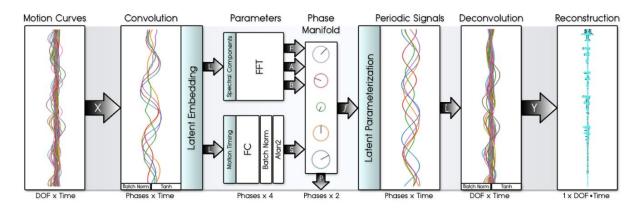


Illustration of DeepPhase's periodic autoencoder architecture

Starke et al., Deepphase: Periodic autoencoders for learning motion phase manifolds. ACM Transactions on Graphics, 2022

Framework Core Idea

- Integrates motion dynamics from adjacent segments into diffusion process
 - Minimizes discontinuity between consecutive motion segments
 - Utilizes these dynamics to generate <u>realistic blending transitions</u>
- Employs phase mixing to jointly integrate semantic and transitional conditions

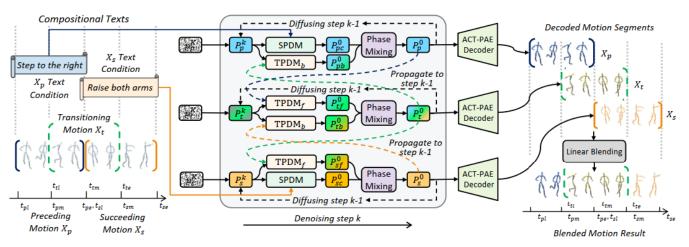


Illustration of our Compositional Motion Generation pipeline

Framework Overview

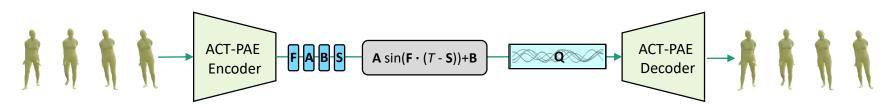
- Three Components:
 - ACT-PAE: Encode human motion sequence into phase latent space
 - SPDM: Incorporates **semantic information** into the diffusion process
 - TPDM: Integrates adjacent motion dynamics into the diffusion process



Illustration of our Compositional Motion Generation pipeline

ACT-PAE

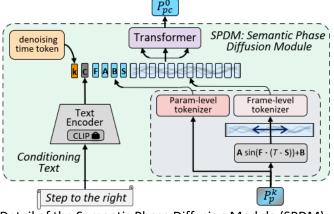
- Action CenTric Periodic AutoEncoder (ACT-PAE):
 - Encode motion $\textbf{\textit{X}} \in \mathbb{R}^{N \times E}$ into four phase latents $\textbf{\textit{F}}, \textbf{\textit{A}}, \textbf{\textit{B}}, \textbf{\textit{S}} \in \mathbb{R}^Q$
 - Reparameterizes latents into periodic signal $Q \in \mathbb{R}^{N \times Q}$ using: $Q = A \sin(F \cdot (T S)) + B$
 - Decode $oldsymbol{Q}$ back to reconstructed motion $\widehat{oldsymbol{X}}$
- Advantage over Traditional PAE:
 - Avoiding fixed-window motion slicing, enabling the capture of unified and semantic meaningful motion dynamics in the motion segment as a cohesive unit



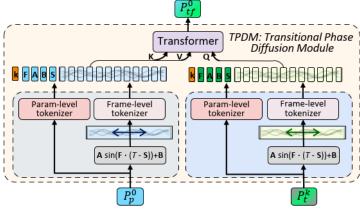
Detail of the Action centric Periodic AutoEncoder (ACT-PAE)

SPDM and TPDM

- Semantic Phase Diffusion Module (SPDM):
 - Denoise phase latents $m{P}_{p}^{k}$ utilizing semantic condition $m{C}$
 - Inputs include both phase latents $P_p^k = [F, A, B, S]$ and periodic signal $Q = A \sin(F \cdot (T S)) + B$
- Transitional Phase Diffusion Module (TPDM):
 - Functions similarly to SPDM, but uses adjacent phase parameters $m{P}_{
 m p}^0$ as input
- Advantage over Latent Diffusion Model:
 - The periodic signal Q captures spatial-temporal context within the phase latents P



Detail of the Semantic Phase Diffusion Module (SPDM)



Detail of the Transitional Phase Diffusion Module (TPDM)

Compositional Phase Diffusion Pipelines

- Pipeline for **Compositional Motion Generation**:
 - Denoise phase latent using SPDM (for $m{P}_{
 m c}^0$) and two TPDMs (for $m{P}_f^0$ and $m{P}_{
 m b}^0$)
 - Perform **phase mixing** on the denoised outputs: $P^0 = r \frac{P_f^0 + P_b^0}{2} + (1 r)P_c^0$
 - Diffuse ${m P}^0$ to the step k 1 or decode via ACT-PAE to generate ${m X}_{
 m p}$, ${m X}_{
 m t}$, ${m X}_{
 m S}$
 - Linear blend the transition segment $X_{
 m t}$ into the overlap region between $X_{
 m p}$ and $X_{
 m s}$

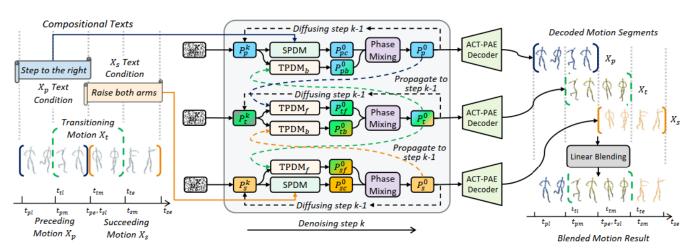


Illustration of our Compositional Motion Generation pipeline

Compositional Phase Diffusion Pipelines

- Pipeline for **Motion Inbetweening**:
 - Encode user-provided motion segment into phase latents ($m{P}_p^0$ and $m{P}_s^0$) using ACT-PAE encoder
 - Denoise the inbetweening motion $\pmb{X}_{ ext{i}}$ and the transitioning motions $\pmb{X}_{ ext{t}_1}$ and $\pmb{X}_{ ext{t}_2}$
 - Linear blend the transition segment $X_{\mathrm{t_1}}$ and $X_{\mathrm{t_2}}$ into the overlapping regions of X_{p} , X_{i} , X_{s}
 - Note that X_i can be further conditioned with text input by incorporating an optional SPDM

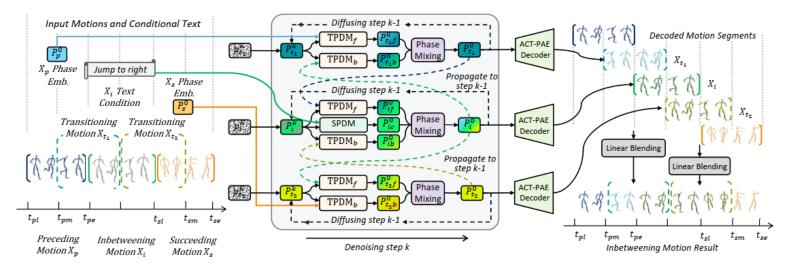
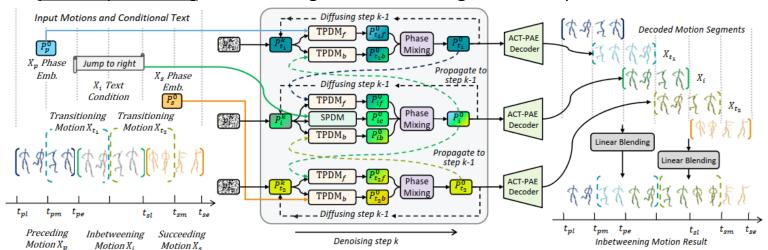


Illustration of our Motion Inbetweening pipeline

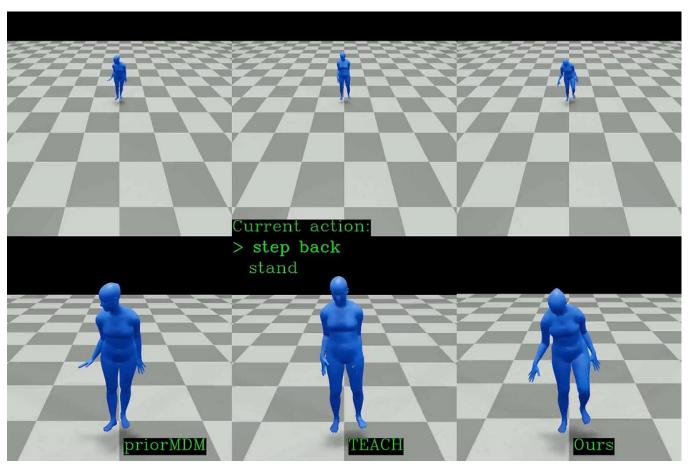
Compositional Phase Diffusion Pipelines

- Advantages of the pipelines:
 - Coherent Transitions:
 Bidirectional TPDMs progressively propagate phase information throughout the sequence, ensuring smoother and more coherent motion generation
 - Scalable and Flexible:

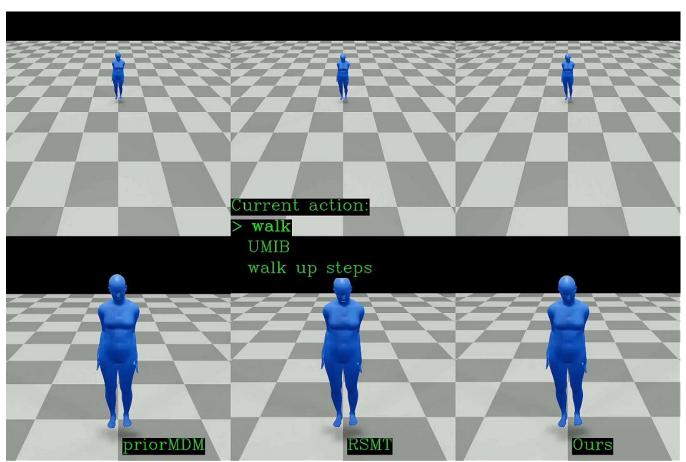
Pipeline supports an <u>arbitrary number of segments</u> by rearranging SPDM and TPDM modules, with <u>parallel processing</u> for efficient generation of long motion sequences.



Result: Compositional Motion Generation



Result: Motion Inbetweening



Summary

- Operating within a unified phase latent space facilitates alignment of transitional dynamics, enables <u>smoother transitions between motion clips</u>
- Scalable and efficient framework supports diverse motion generation tasks and allows <u>parallel processing of arbitrary number of motion segments</u>

