

Ensternit

Streaming Federated Learning with Markovian Data

NeurIPS 2025

Tan Khiem Huynh ¹ Malcolm Egan ¹ Giovanni Neglia ² Jean-Marie Gorce ¹

¹Inria Lyon, France, ²Inria Sophia Antipolis, France

► *M* clients collaborate to minimize the following loss function:

Definition (Objective function)

$$F(w) = \frac{1}{M} \sum_{m=1}^{M} F_m(w)$$

- ► Currently, we solve the above problem by assuming:
 - ERM: data is sampled uniformly from a fix. pre-collected local dataset \mathcal{D}_m .
 - Stochastic Optimization: data is sampled I.I.D. from the local distribution π_m (usually unknown).

- ▶ What happens, if
 - Having a large pre-collected dataset is costly?
 - In IoT: sensors/edge devices with limited memory continually collect data to train their models.

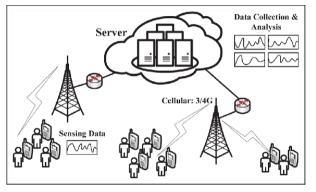


Figure: Crowdsensing

- ► What happens, if
 - Obtaining i.i.d. samples from the local distributions is hard / not possible?
 - In Time-Series Analysis: temporal dependence between data samples.

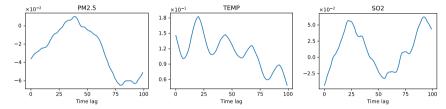


Figure: Auto-correlation of some air-quality measurements from the Beijing Multi-site Air-Quality dataset

- What happens, if
 - Having a large pre-collected dataset is costly?
 - In IoT: sensors/edge devices with limited memory continually collect data to train their models.
 - Obtaining i.i.d. samples from the local distributions is hard / not possible?
 - In Time-Series Analysis: temporal dependence between data samples.

Ouestion

What is the performance of FL algorithms when I.I.D or pre-collected data is not available?

Non-LLD, Data Stream

▶ Observations in many real-world physical and biological systems are often modeled by Markov processes:

$$\mathbb{P}\left(x_{i}\mid x_{i-1},\ldots,x_{1}\right)=\mathbb{P}\left(x_{i}\mid x_{i-1}\right)$$

- ► Assumption: Each client has access to samples drawn from a Markov chain that converges to the corresponding local distribution $\pi_{\mathbf{m}}$.
 - Speed of convergence: measured by mixing time.

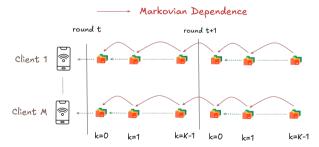


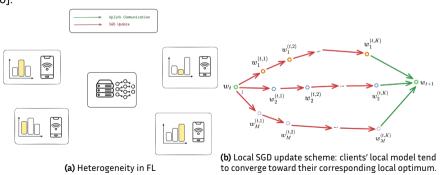
Figure: Streaming FL with Markovian Data

Main contributions

- ► We prove that:
 - FL with Markovian Data requires as little communication as in the i.i.d. setting.
 - Collaboration in FL remains beneficial under this regime.
- This has been shown in Federated Reinforcement Learning under more restricted setting:
 - Linear Least-Square loss.
 - Stationary and fast-mixing Markov chains.
- ► We focus on more general setting:
 - Non-convex loss
 - No assumption on the speed of convergence for the underlying Markov chains.

Main contributions

- ► Two standard baselines:
 - Minibatch SGD: clients compute gradient at the same points → server perform SGD steps on the average gradients.
 - ullet Local SGD: clients perform SGD on their local model o server averages the local models.
- ▶ Heterogeneity slows down Local SGD, as previously shown in the I.I.D. setting [Woodworth et al., 2020].



Main contributions

- ▶ Heterogeneity slows down Local SGD, as previously shown in the I.I.D. setting [Woodworth et al., 20201.
- ▶ We then propose a momentum-based variant of Local SGD that helps mitigating the heterogeneity effect.

```
Algorithm 1 Local SGD-M
   Input: initial model w_0 and gradient estimate v_0, local learning rate v_0, global learning rate \gamma and
   momentum β
   for t = 0 to T - 1 do
     for every client m \in [M] in parallel do
        Initialize local model w_i^{(m,0)} = w_i
        for k = 0 to K - 1 do v_t^{(m,k)} = \beta \nabla f_m \left( w_t^{(m,k)}; x_t^{(m,k)} \right) + (1 - \beta) v_t
            w_{\cdot}^{(m,k+1)} = w_{\cdot}^{(m,k)} - w_{\cdot}^{(m,k)}
        Communicate w.m,K
      end for
      Aggregate: v_{t+1} = \frac{1}{nMK} \sum_{m=1}^{M} (w_t - w_t^{(m,K)})
      Server update: w_{t+1} = w_t - \gamma v_{t+1}
   end for
   Output: \hat{w}_T sampled uniformly from w_0, \dots, w_{T-1}.
```

Figure: Local SGD with Momentum

• Each local update: a convex combination of the current stochastic gradient and the average of all local updates performed in the previous rounds.

	Communication complexity	Sample complexity per client
Minibatch SGD	$\frac{L\Delta_0}{\epsilon}$	$rac{ au\sigma^2 L \Delta_0}{M\epsilon^2}$
Local SGD	$\frac{L\Delta_0}{\epsilon}\max\left\{\delta^2, \frac{\sigma^2+\phi^2}{\epsilon}\right\}$	$\frac{\tau \sigma^2 L \Delta_0}{M \epsilon^2} \max \left\{ \delta^2, \frac{\sigma^2 + \phi^2}{\epsilon} \right\}$
Local SGD-M	$rac{L\Delta_0}{eta\epsilon}$	$rac{ au\sigma^2 L \Delta_0}{M\epsilon^2}$
Lower bound I.I.D. [Patel et al., 2022]	$rac{L\Delta_0}{\epsilon}$	$rac{\sigma L \Delta_0}{{ m M} \epsilon^{3/2}}$

Table: Communication & sample complexity of FL algorirthms with Markovian Data τ : maximum mixing time of clients' Markov chains, δ^2 , ϕ^2 : heterogeneity constants, σ^2 : noise in stochastic gradient estimates.

Experimental results

- ▶ Beijing Multi-Site Air-Quality dataset: hourly measurements of different air-quality indicators during 4 years.
 - Prediction target: seasonality-adjusted PM2.5 concentration.
- ► Collaboration in FL is still beneficial with Markovian data!
 - The sample complexity per client scales inversely with the number of clients.

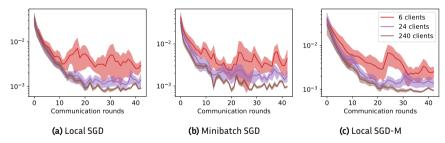


Figure: Grad. norm trajectory with different number of clients

Experimental results

- ▶ Beijing Multi-Site Air-Quality dataset: hourly measurements of different air-quality indicators during 4 years.
 - Prediction target: seasonality-adjusted PM2.5 concentration.
- ▶ Local SGD suffers from heterogeneity, while Minibatch SGD & Local SGD with Momentum do not.

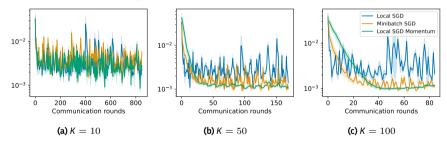


Figure: Grad. norm trajectory for with different number of local steps K.

Thank you, see you in San Diego!

Poster session: Thu 4 Dec 4:30 p.m. - 7:30 p.m. PST