

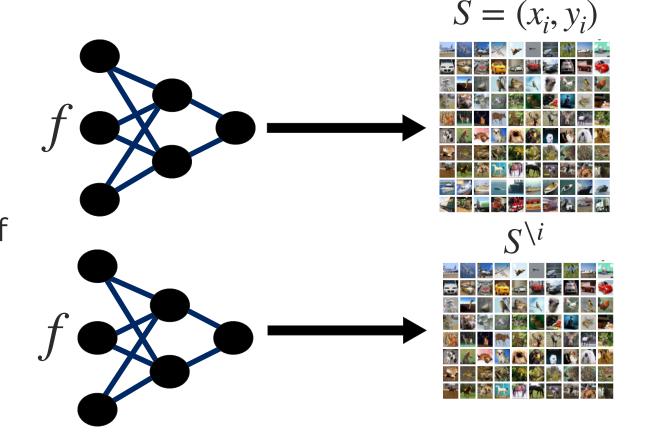
Memorization in Graph Neural Networks

Adarsh Jamadandi¹, Jing Xu², Adam Dziedzic² and Franziska Boenisch²

CNRS, IRISA, Rennes¹ CISPA Helmholtz Centre for Information Security, Saarland, Germany²

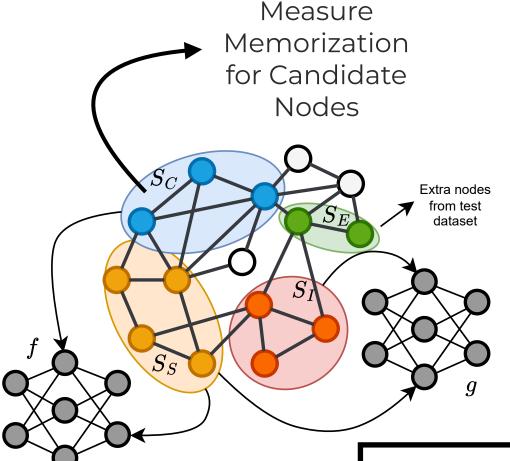
Measuring Memorization

- Train model f on S and on $S^{\setminus i}$.
- Compare the behavior of the two models.
- A model needs to see the label of the sample to correctly predict the label → Memorized.



$$\mathcal{M}(x_i) = \underset{f \sim \mathcal{T}(S)}{\mathbb{E}} \left[\Pr[f(x_i) = y_i] \right] - \underset{f \sim \mathcal{T}(S \setminus x_i)}{\mathbb{E}} \left[\Pr[f(x_i) = y_i] \right]$$

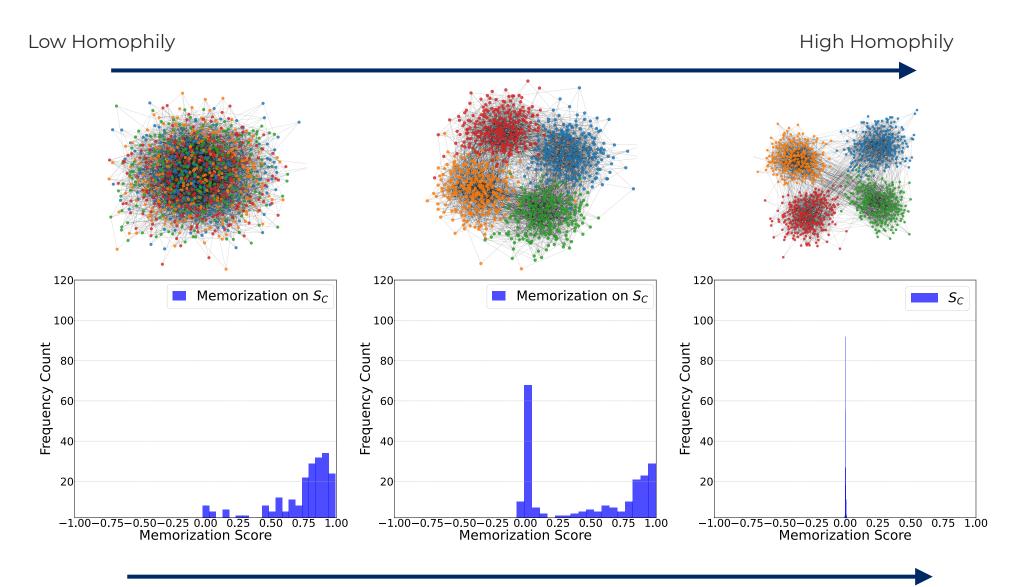
Measuring Memorization in GNNs



- Models $f = S_s \cup S_c$ and $g = S_s \cup S_I$ are trained on various subsets of nodes.
- We isolate the effect of one node's label on model behavior.

$$\mathcal{M}(v_i) = \mathbb{E}_{f \sim \mathcal{T}(S)} \left[\Pr[f(v_i) = y_i] \right] - \mathbb{E}_{g \sim \mathcal{T}(S \setminus x_i)} \left[\Pr[g(v_i) = y_i] \right]$$

Homophily and Memorization



Explaining Memorization in GNNs

• We uncover 3 internal mechanisms to explain the emergence of memorization in GNNs.

• Graph homophily - like nodes connected to like nodes.

• Implicit bias of GNNs to leverage the graph structure.

Label-Feature Inconsistency.

Analyzing the Training Dynamics of GNNs

- We will define an alignment metric, cosine-similiarity-like applied to matrices given by $\mathscr{A}(K_1,K_2)=\frac{\langle K_1,K_2\rangle_F}{||K_1||_F||K_2||_F}$
- Adjacency Matrix: A
- ullet Optimal Kernel Matrix: $oldsymbol{\Theta}^* = ar{\mathbf{Y}}ar{\mathbf{Y}}^T$
- NTK Matrix: $\mathbf{\Theta}_t^l(x, \tilde{x}; \mathbf{A}) = \nabla_W f(x; \mathbf{A})^T \cdot \nabla_W f(\tilde{x}; \mathbf{A})$

We Will Track

Kernel-Graph Alignment

• Alignment between NTK matrix $\mathbf{\Theta}_t$ and adjacency matrix \mathbf{A} ($\mathcal{A}(\mathbf{\Theta}_t, \mathbf{A})$).

 Represents the implicit bias of GNNs to leverage the graph structure.

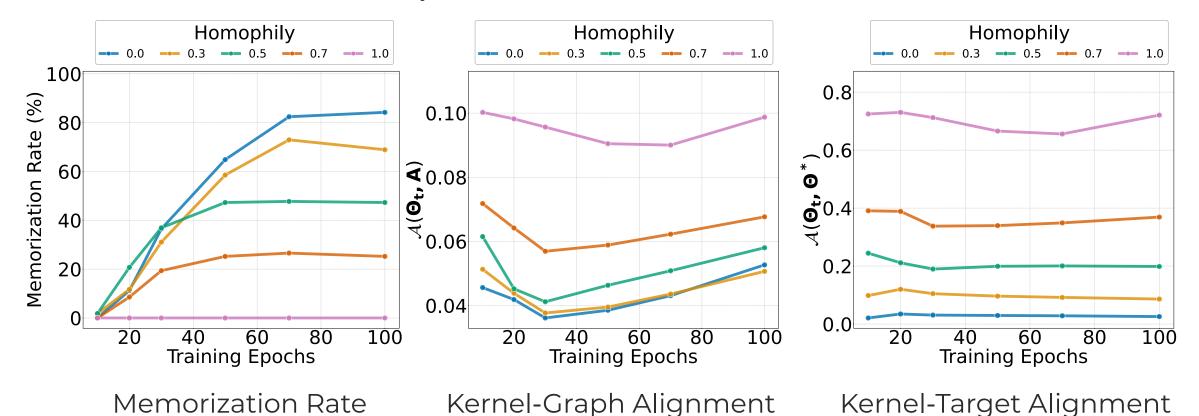
Kernel-Target Alignment

• Alignment between the NTK matrix $\mathbf{\Theta}_t$ and optimal kernel matrix $\mathbf{\Theta}^*$.

 This metric measures how well a classifier generalizes, a higher alignment implies good generalization.

Alignment Matrices for Synthetic Datasets

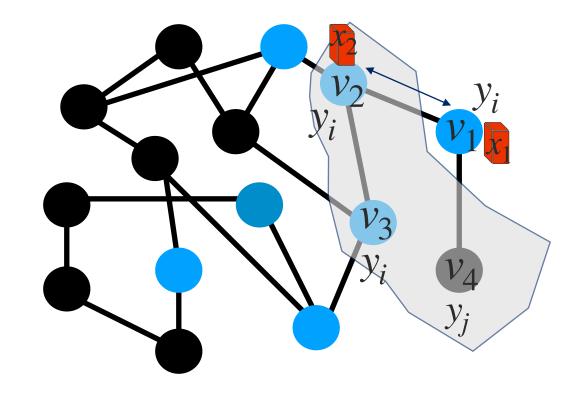
- Low homophily → Memorization rate increases.
- Low homophily (graph structure is less informative) o Still $\mathscr{A}(\Theta_t,A)$ improves.
- Low homophily $\to \mathscr{A}(\Theta_t, \Theta^*)$ poor, suggests memorization.



Node Atypicality

Novel Label Disagreement
Score (LDS) →local structural anomaly in the feature space of the nodes.

 Nodes with high LDS more likely to get memorized.



$$LDS_k(v_i) = \frac{1}{k} \sum_{v_j \in N_k(v_i)} \mathbb{I}[y_j \neq y_i]$$

Summary

GNNs also memorize node labels.

- Homophily↑ Memorization Rate↓.
- In low-homophily settings, the graph is unhelpful for the task. But GNNs have an implicit bias to use the graph structure.
- How to achieve 0 train loss? Memorize!
- Nodes with high label disagreement score usually get memorized.

Our Paper:

