FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Exploiting Dynamic Sparsity in Einsum

November 7, 2025

NeurIPS 2025

Christoph Staudt, Mark Blacher, Tim Hoffmann, Kaspar Kasche, Olaf Beyersdorff, Joachim Giesen

Faculty of Mathematics and Computer Science

Overview

Einsum and Tensor Networks

Exponential Separation

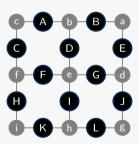
Experiments

Einsum and Tensor Networks

Einsum and Tensor Networks

Einsum basics

Operation	Einsum expression
inner vector product	einsum $(i, i \rightarrow; u, v)$
elementwise vector product	$\operatorname{einsum}\left(i,i ightarrow i;\;u,v ight)$
matrix-matrix-vector product	einsum $(ij, jk, k \to i; A, B, v)$

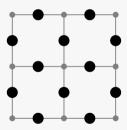

In practice large expressions are executed in pairwise steps:

einsum
$$(ij, j \rightarrow i; A, \text{einsum} (jk, k \rightarrow j; B, v))$$

Einsum and Tensor Networks

Tensor hypernetworks as graphical representation

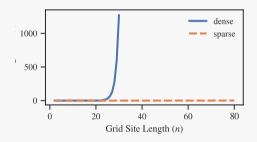
einsum $(cb, ba, cf, be, ad, fe, ed, fi, eh, dg, ih, hg \rightarrow; A, B, C, D, E, F, G, H, I, J, K, L)$

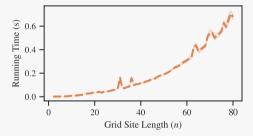


Exponential Separation

Exponential Separation

Grid instances

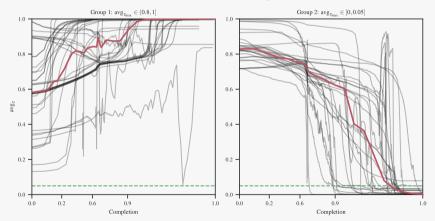

- Each tensor (black node) is a diagonal matrix
- We prove: For such a square grid with side length n, dense tensors require at least 2^n flops, while sparse tensors only need $O(n^2)$ flops.



Exponential Separation

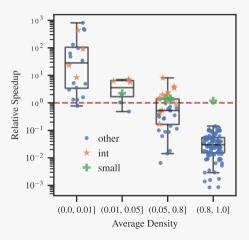
Grid instances

Synthetic einsum expressions based on the grid formulas used in the proof.



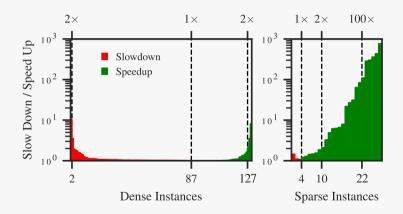
Experiments

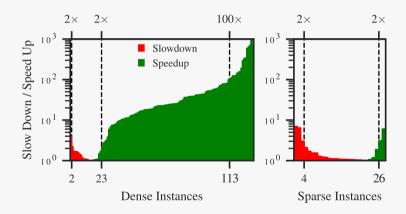
Experiments


Dynamic sparsity in the einsum benchmark

Real world instances from the einsum benchmark: https://benchmark.einsum.org/.

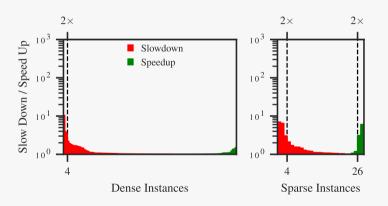
Experiments


Sparse Speedup


Hybrid Algorithm

Hybrid Algorithm

Hybrid algorithm speedup



Hybrid Algorithm Hybrid algorithm speedup

Hybrid Algorithm

Hybrid algorithm speedup

Conclusions

- 1. Large einsum expressions exhibit dynamic sparsity in practice.
- 2. Significant speed ups are possible by exploiting dynamic sparsity.