

Training-Free Bayesianization for Low-Rank Adapters of Large Language Models

Haizhou Shi*1, Yibin Wang*2, Ligong Han3, Huan Zhang2, Hao Wang1

*Equal Contribution ¹Rutgers University ²UIUC ³MIT-IBM Waston AI Lab

What has been the most popular research topic in ML for the past 3 years?

What will be the most valuable research topic in year 2025?

Large Language Models (LLM)

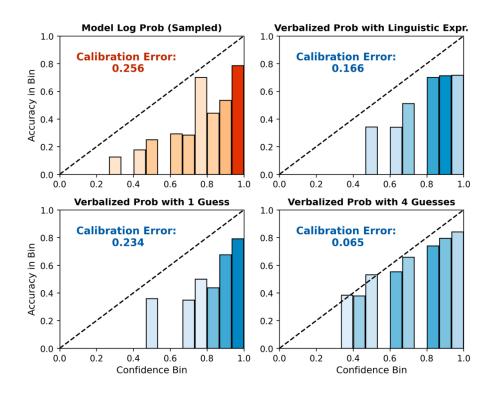
Large Language Models (maybe?)

Accurate Estimation of Uncertainty is Crucial to Trustworthy LLMs!!!

Content

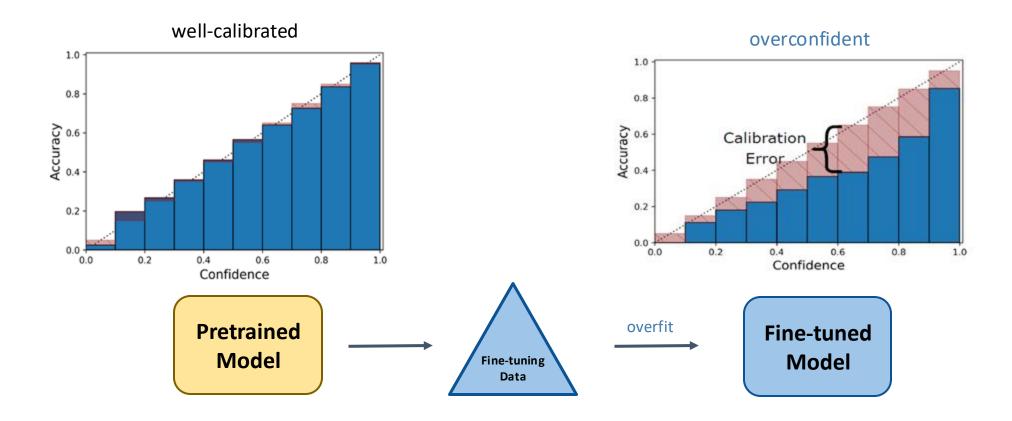
- Background: Uncertainty Estimation of Large Language Models
 - Verbalized Uncertainty for Generation
 - Uncertainty Estimation for Adaptation (Classification)

Training-Free Bayesianization for Low-Rank Adapters of LLMs


10/20/2025

- Verbalized Uncertainty for Generation
 - Directly ask for uncertainty/confidence in the prompt.
 - It has been controversial.
 - It has been lacking theoretical supports.

Dataset	Acc	Method	ECE	AUROC	AUPRC-P	AUPRC-N
StrategyQA	59.90	Verbalized	39.04	50.34	60.06	40.27
		* *		55.50	62.99	45.22
		len-norm-prob	37.65	55.50	62.99	45.22
		token-prob	32.43	60.61	69.90	47.10


"Comparisons with white-box methods indicate that while white-box methods perform better, the gap is narrow."[1]

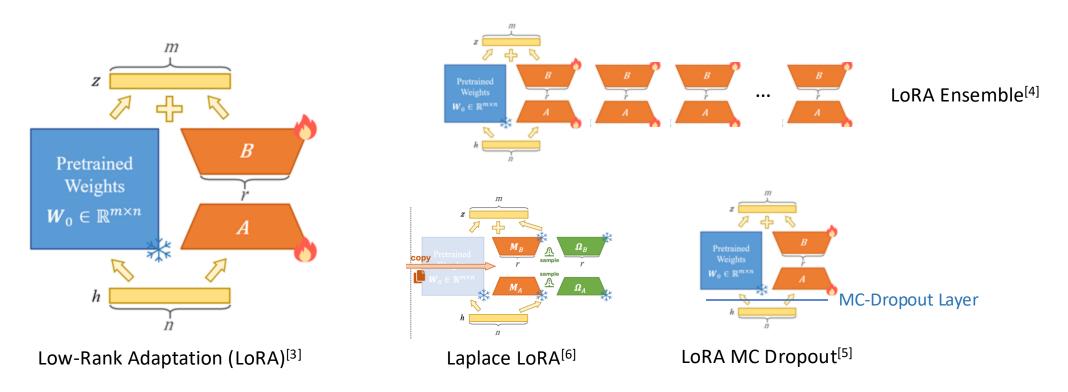
"Verbalized confidence scores (blue) are **better-calibrated** than log probabilities (orange) for gpt-3.5-turbo." [2]

- Uncertainty Estimation for Downstream Adaptation
 - Data is usually *scarce*, hence *overconfidence* is more likely.

10/20/2025

- Uncertainty Estimation for Downstream Adaptation
 - Data is usually *scarce*, hence *overconfidence* is more likely.
 - Closer to the traditional uncertainty estimation setting.
 - Bayesian Neural Networks are built for it!

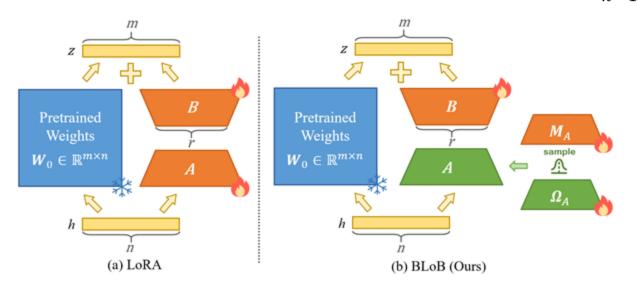
$$\underline{P(\boldsymbol{y}|\boldsymbol{x},\mathcal{D})} = \int P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W})\underline{P(\boldsymbol{W}|\mathcal{D})}d\boldsymbol{W}$$
 predictive distribution posterior distribution posterior distribution variational distribution


The true posterior is usually intractable!

$$\min_{\boldsymbol{\theta}} \operatorname{KL}[q(\boldsymbol{W}|\boldsymbol{\theta}) \| P(\boldsymbol{W}|\mathcal{D})] \quad \Leftrightarrow \quad \min_{\boldsymbol{\theta}} - \mathbb{E}_{q(\boldsymbol{W}|\boldsymbol{\theta})}[\log P(\mathcal{D}|\boldsymbol{W})] + \operatorname{KL}[q(\boldsymbol{W}|\boldsymbol{\theta}) \| P(\boldsymbol{W})]$$
Variational Free Energy

What about the extra cost of "Bayesianziation"?

- Uncertainty Estimation for Downstream Adaptation
 - Data is usually *scarce*, hence *overconfidence* is more likely.
 - Bayesian Neural Nets (BNNs) for uncertainty estimation.
 - Parameter-Efficient Fine-Tuning (PEFT) for parameter efficiency.



- BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models^[7]
 - Asymmetric Bayesianization (AB):
 - Elements of *A* are independent Gaussian:

$$q(\boldsymbol{A}|\boldsymbol{\theta} = \{\boldsymbol{M}, \boldsymbol{\Omega}\}) = \prod_{ij} \mathcal{N}(A_{ij}|M_{ij}, \Omega_{ij}^2)$$

• Elements of **B** are deterministic:

$$W_{ij} = W_{0,ij} + \sum_{k=1}^{r} B_{ik} A_{kj},$$

Advantage:

- Reduces sampling noise -> Improves convergence!
- Reduces additional memory cost by 50%!

Training-Free Bayesianization (TFB): Motivation

- Main Problems with Verbalized Uncertainty of LLMs:
 - No good theoretical guarantees
 - Empirically unstable
- Main Challenges of BLoB:
 - Training configuration might heavily depend on different data distributions
 - Hard to find the right training configuration yielding good uncertainty estimation ability

Can we "Bayesianize" a low-rank adapter in a **theoretically sound** and **empirically simple** way?

- TFB Modeling
 - Variational posterior: low-rank isotropic Gaussians

$$q(\text{vec}(\boldsymbol{W})|\boldsymbol{B},\boldsymbol{\theta}) = \mathcal{N}(\text{vec}(\boldsymbol{W})|\boldsymbol{\mu}_q,\text{proj}(\sigma_q^2\boldsymbol{I}))$$

controlled by single variable

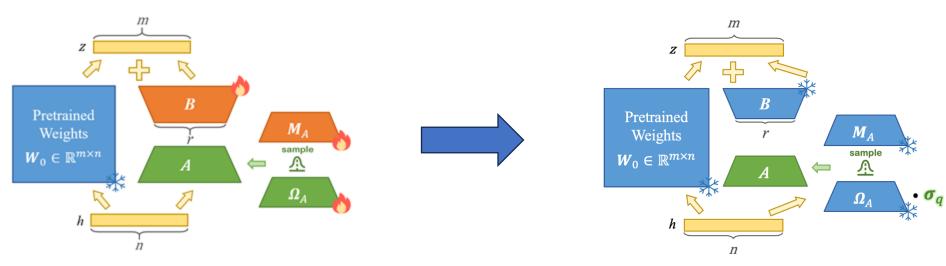


Figure: BLoB Bayesianization

Figure: TFB Bayesianization

- TFB Modeling
 - Variational posterior: low-rank isotropic Gaussians

controlled by single variable

- In practice:
 - Given the LoRA adapter {B, A};
 - Compact Singular Value Decomposition (SVD) of B:

$$\boldsymbol{B} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{\top},$$

• Transform the original LoRA into a new pair:

$$\{B' = UD, A' = V^{\top}A\},$$

Calculate the variance matrix Ω:

$$\Omega_{ij} = \sigma_q/d_i, \quad \forall i \in [r], \forall j \in [n].$$

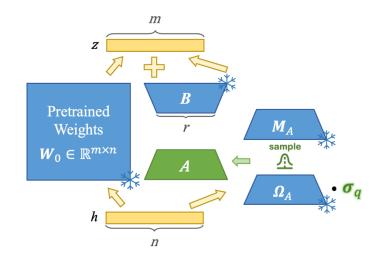


Figure: TFB Bayesianization

- TFB Modeling
 - Instead of performing Variational Inference (VI), we perform maximal variance search:

$$\max \quad \sigma_q$$
 s.t. $|l(\mathcal{D}|\boldsymbol{B}', \boldsymbol{M}, \boldsymbol{\Omega}(\sigma_q)) - l(\mathcal{D}|\boldsymbol{B}, \boldsymbol{A})| \leq \epsilon,$

where

- $l(\mathcal{D}|\boldsymbol{B},\boldsymbol{A})$ is the original performance
- $l(\mathcal{D}|\boldsymbol{B}',\boldsymbol{M},\boldsymbol{\Omega}(\sigma_q))$ is the post-Bayesianization performance
- ϵ is the max tolerance of the performance change

- TFB Modeling
 - Instead of performing Var

where

- $l(\mathcal{D}|m{B},m{A})$ is the origin 4: while σ_q not converged do
- $l(\mathcal{D}|oldsymbol{B}',oldsymbol{M},oldsymbol{\Omega}(\sigma_q))$ is t
- ϵ is the max tolerance of t

Algorithm 1 Training-Free Bayesianization (TFB)

input \mathcal{D} : Anchor Dataset;

input $\{B, A\}$: Low-Rank Component;

input *l*: Model Evaluation Metric;

input ϵ : Performance Change Tolerance;

input $[\sigma_{q_{\min}}, \sigma_{q_{\max}}]$: search range of the posterior STD.

1: Evaluate the original performance: $p_0 \leftarrow l(\mathcal{D}|\boldsymbol{B}, \boldsymbol{A})$.

2: Singular Value Decomposition on **B**:

$$\boldsymbol{U}, \boldsymbol{D}, \boldsymbol{V} \leftarrow \text{SVD}(\boldsymbol{B}).$$

 \triangleright Eqn. 4.

3: Get an equivalent pair of the low-rank component:

$$B' \leftarrow UD; A' \leftarrow V^{\top}A.$$

 \triangleright Eqn. 5.

5: $\sigma_q \leftarrow (\sigma_{q_{\text{max}}} + \sigma_{q_{\text{min}}})/2$.

Calculate the STD matrix Ω for A':

$$\Omega_{ij} = \sigma_q/D_{ii}$$
.

 \triangleright Eqn. 6.

Evaluate the performance:

$$p \leftarrow l(\mathcal{D}|\boldsymbol{B}', \boldsymbol{A}', \boldsymbol{\Omega}).$$

if $|p-p_0|<\epsilon$ then

 $\sigma_{q_{\min}} \leftarrow \sigma_{q}$.

10: else

11: $\sigma_{q_{\max}} \leftarrow \sigma_q$.

12: end if

13: end while

output $\{B', A', \Omega\}$: Bayesianized Low-Rank Adapter.

variance search:

Training-Free Bayesianization (TFB): Theory

- Theoretical Analysis
 - (Thm.1) TFB produces low-rank isotropic Gaussian posteriors.

$$q(\text{vec}(\boldsymbol{W})|\sigma_q) = \mathcal{N}(\text{vec}(\boldsymbol{W})|\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q),$$

$$where \quad \boldsymbol{\mu}_q = \text{vec}(\boldsymbol{W}_0 + \boldsymbol{B}'\boldsymbol{M}),$$

$$\boldsymbol{\Sigma}_q = \sigma_q^2 \cdot \boldsymbol{I}_n \otimes \begin{bmatrix} \boldsymbol{I}_r \\ \boldsymbol{O}_{m-r} \end{bmatrix}.$$
(10)

• (Thm.2) TFB is equivalent to Variational Inference.

$$\begin{array}{c|c} \max & \sigma_q \\ s.t. & l_{\mathcal{D}}(\sigma_q) \leq \epsilon, \end{array} \iff \begin{array}{c} \min \\ \sigma_q \end{array} \quad l_{\mathcal{D}}(\sigma_q) + \lambda \operatorname{KL}[q(\boldsymbol{W}|\sigma_q) \parallel P(\boldsymbol{W})], \end{array}$$

- If $l_{\mathcal{D}}$ is the NLL loss and locally convex $[0, \epsilon_0)$;
- And the prior standard deviation $\sigma_p > \epsilon_0$.

- Main Conclusions
 - TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).

				In-Distribution Datasets						$\textbf{Out-of-Distribution Datasets} \ (OBQA{\rightarrow}X)$				
Metric	Method	TF?	III-DISH IBUUSI DUUSUS						Small	l Shift	Large	Large Shift		
			WG-S	ARC-C	ARC-E	WG-M	OBQA	BoolQ	ARC-C	ARC-E	Chem	Phy		
	MCD ENS LAP MonteCLoRA BLoB	X X BP X X	78.82 ± 0.52 76.05 ± 0.92 69.20 ± 0.18	$\begin{array}{c} 82.55{\pm}0.42 \\ 79.95{\pm}0.42 \\ 78.38{\pm}0.89 \end{array}$	$\begin{array}{c} 91.37{\pm}0.38 \\ \textbf{91.84}{\pm}\textbf{0.36} \\ 90.73{\pm}0.08 \\ 90.79{\pm}0.62 \\ 91.14{\pm}0.54 \end{array}$	$\begin{array}{c} \textbf{83.99} \!\pm\! \textbf{0.74} \\ \textbf{82.83} \!\pm\! \textbf{0.85} \\ \textbf{74.79} \!\pm\! \textbf{0.23} \end{array}$	$\begin{array}{c} 87.37 {\pm} 0.67 \\ 87.90 {\pm} 0.20 \\ 84.13 {\pm} 0.31 \end{array}$	$\begin{array}{c} \textbf{90.50} \!\pm\! \textbf{0.14} \\ 89.36 \!\pm\! \textbf{0.52} \\ 89.17 \!\pm\! \textbf{0.30} \end{array}$	$\begin{array}{c} 79.62{\pm}0.57 \\ 81.08{\pm}1.20 \\ 79.63{\pm}0.87 \end{array}$	$\begin{array}{c} 86.56{\pm}0.60 \\ 87.21{\pm}1.20 \\ 86.58{\pm}0.49 \end{array}$	$\begin{array}{c} \underline{49.65 \pm 3.22} \\ 48.26 \pm 3.93 \\ \textbf{50.00} \pm \textbf{1.04} \end{array}$	$44.44{\scriptstyle\pm1.96}\atop {\scriptstyle46.18{\scriptstyle\pm1.30}\atop {\scriptstyle42.01{\scriptstyle\pm2.41}}}$		
ACC (†)	MLE + TFB (Ours)	- /			$91.67 \scriptstyle{\pm 0.36} \\ 91.33 \scriptstyle{\pm 0.37}$									
	MAP + TFB (Ours)	- ✓			$91.61 {\pm} 0.44 \\ 91.39 {\pm} 0.37$									
	BLoB-Mean + TFB (Ours)	×			$\frac{91.64 \pm 0.55}{91.76 \pm 0.48}$									
	MCD ENS LAP MonteCLoRA BLoB	X X BP X X	14.72 ± 0.17 4.18 ± 0.11	$\begin{array}{c} 13.69{\pm}1.11 \\ 13.45{\pm}1.19 \\ 9.26{\pm}3.08 \\ 12.22{\pm}0.75 \\ \textbf{5.41}{\pm}\textbf{1.17} \end{array}$	$\begin{array}{c} 6.73 \pm 0.71 \\ 6.59 \pm 0.45 \\ 5.27 \pm 0.51 \\ 7.23 \pm 0.71 \\ \underline{2.70 \pm 0.87} \end{array}$	$\begin{array}{c} 13.05{\pm}0.99\\ 11.17{\pm}0.92\\ \textbf{3.50}{\pm}\textbf{0.78}\\ 15.97{\pm}0.45\\ 4.28{\pm}0.64 \end{array}$	$\begin{array}{c} 9.76 {\pm} 0.71 \\ 8.17 {\pm} 0.86 \\ 8.93 {\pm} 0.34 \\ 9.79 {\pm} 0.07 \\ \underline{2.91 {\pm} 0.92} \end{array}$	$\begin{array}{c} 7.95 \pm 0.17 \\ 7.35 \pm 0.55 \\ \textbf{1.93} \pm \textbf{0.22} \\ 7.09 \pm 0.52 \\ \underline{2.58 \pm 0.25} \end{array}$	$\begin{array}{c} 13.63 \pm 1.18 \\ 11.37 \pm 1.82 \\ 7.83 \pm 1.49 \\ 10.65 \pm 0.53 \\ \textbf{5.61} \pm \textbf{0.40} \end{array}$	$7.21{\scriptstyle\pm1.13\atop 7.80{\scriptstyle\pm1.99\atop 8.18{\scriptstyle\pm0.26}}}$	$\begin{array}{c} 30.91{\pm}3.57 \\ 18.92{\pm}6.03 \\ \textbf{14.49}{\pm}\textbf{0.57} \\ 23.21{\pm}0.17 \\ 16.67{\pm}0.87 \end{array}$	$\begin{array}{c} 26.80{\pm}3.23 \\ \underline{13.17}{\pm}2.14 \\ \underline{30.39}{\pm}4.76 \end{array}$		
ECE (↓)	MLE + TFB (Ours)	-		$^{16.35 \pm 0.68}_{11.63 \pm 0.68}$	7.00 ± 0.53 5.14 ± 0.14	$13.83{\scriptstyle\pm0.65}\atop10.01{\scriptstyle\pm0.70}$	9.77±0.81 7.20±0.47	8.69 ± 0.21 7.39 ± 0.26	14.45±2.19 6.54±0.53	10.78±0.50 5.69±1.64	$32.46{\scriptstyle\pm2.60}\atop{\scriptstyle\underline{14.63}{\scriptstyle\pm1.46}}$			
	MAP + TFB (Ours)	-		$15.77{\scriptstyle\pm1.60}\atop11.27{\scriptstyle\pm2.53}$	6.62±0.64 5.76±0.63	$14.26 {\scriptstyle \pm 0.92} \atop 10.97 {\scriptstyle \pm 1.19}$	12.19±0.55 9.70±0.69	8.40±0.25 6.86±0.31	$16.46{\scriptstyle \pm 0.44}\atop13.25{\scriptstyle \pm 0.95}$		34.79±3.76 27.21±2.62			
	BLoB-Mean + TFB (Ours)	Х ✓	$15.43{\scriptstyle \pm 0.15} \\ \underline{8.16}{\scriptstyle \pm 0.48}$	$12.41{\scriptstyle\pm1.52}\atop\underline{6.48}{\scriptstyle\pm0.36}$	$4.91{\scriptstyle \pm 0.28} \\ \textbf{2.44}{\scriptstyle \pm 0.50}$	$9.37{\scriptstyle\pm1.33}\atop \underline{3.83}{\scriptstyle\pm0.43}$	6.44±0.15 2.67±0.18	$\substack{6.26 \pm 0.29 \\ 3.10 \pm 0.59}$	$11.22{\pm}0.38\\ 6.69{\pm}1.63$	$\begin{array}{c} 6.34{\pm}0.71 \\ \underline{3.61}{\pm}0.87 \end{array}$	$26.65{\scriptstyle\pm3.06\atop18.45{\scriptstyle\pm6.75}}$			
	MCD ENS LAP MonteCLoRA BLoB	X X BP X X	$\begin{array}{c} 0.83 \pm 0.01 \\ 0.75 \pm 0.02 \\ \underline{0.56 \pm 0.00} \\ 0.82 \pm 0.02 \\ 0.58 \pm 0.00 \end{array}$	$\begin{array}{c} 0.99{\pm}0.10 \\ 0.80{\pm}0.11 \\ 1.18{\pm}0.02 \\ 0.71{\pm}0.03 \\ \textbf{0.51}{\pm}\textbf{0.03} \end{array}$	$\begin{array}{c} 0.45{\pm}0.06 \\ 0.38{\pm}0.03 \\ 1.04{\pm}0.01 \\ 0.51{\pm}0.04 \\ \textbf{0.23}{\pm}\textbf{0.01} \end{array}$	$\begin{array}{c} 0.64{\pm}0.03 \\ 0.55{\pm}0.02 \\ 0.51{\pm}0.00 \\ 0.74{\pm}0.02 \\ \underline{0.43{\pm}0.01} \end{array}$	$\begin{array}{c} 0.62{\pm}0.08 \\ 0.45{\pm}0.05 \\ 0.94{\pm}0.00 \\ 0.55{\pm}0.02 \\ \underline{0.34{\pm}0.01} \end{array}$	$\begin{array}{c} 0.49{\pm}0.01 \\ 0.42{\pm}0.05 \\ 0.43{\pm}0.00 \\ 0.36{\pm}0.02 \\ \textbf{0.26}{\pm}0.01 \end{array}$	$\begin{array}{c} 1.03 \pm 0.02 \\ 0.72 \pm 0.07 \\ 1.17 \pm 0.01 \\ 0.68 \pm 0.03 \\ \underline{0.56 \pm 0.02} \end{array}$	$\begin{array}{c} 0.61 {\pm} 0.03 \\ \underline{0.44 {\pm} 0.03} \\ 1.11 {\pm} 0.00 \\ 0.49 {\pm} 0.01 \\ \textbf{0.35} {\pm} \textbf{0.02} \end{array}$	$\begin{array}{c} 1.91 {\pm} 0.18 \\ 1.40 {\pm} 0.18 \\ \textbf{1.27} {\pm} \textbf{0.01} \\ 1.43 {\pm} 0.00 \\ \underline{1.34} {\pm} 0.04 \end{array}$	$\begin{array}{c} 2.02 \pm 0.15 \\ 1.50 \pm 0.13 \\ \textbf{1.28} \pm \textbf{0.00} \\ 1.44 \pm 0.06 \\ \underline{1.35} \pm 0.10 \end{array}$		
NLL (↓)	MLE + TFB (Ours)	- /	0.88 ± 0.04 0.68 ± 0.03	$1.20{\scriptstyle \pm 0.11} \\ 0.85{\scriptstyle \pm 0.02}$	$0.46{\scriptstyle \pm 0.04} \\ 0.33{\scriptstyle \pm 0.03}$	0.68 ± 0.01 0.53 ± 0.01	$0.61 \pm 0.06 \ 0.46 \pm 0.04$	$0.52 \pm 0.01 \ 0.42 \pm 0.00$	$1.07{\scriptstyle \pm 0.06} \\ 0.66{\scriptstyle \pm 0.02}$	$0.72{\scriptstyle \pm 0.06} \\ \underline{0.44}{\scriptstyle \pm 0.01}$	$1.91{\scriptstyle \pm 0.16} \\ 1.39{\scriptstyle \pm 0.11}$	$\substack{2.25 \pm 0.21 \\ 1.49 \pm 0.05}$		
	MAP + TFB (Ours)	-	$0.99{\pm0.07} \ 0.77{\pm0.05}$	$^{1.12\pm 0.23}_{0.80\pm 0.15}$	$0.46{\scriptstyle \pm 0.03} \\ 0.38{\scriptstyle \pm 0.03}$	0.74 ± 0.07 0.57 ± 0.05	0.79 ± 0.02 0.61 ± 0.03	$0.52 \pm 0.01 \ 0.40 \pm 0.01$	1.19±0.04 0.96±0.08	0.83±0.06 0.66±0.06	$1.97{\scriptstyle \pm 0.13}\atop 1.69{\scriptstyle \pm 0.16}$	$\substack{2.32 \pm 0.10 \\ 2.12 \pm 0.08}$		
	BLoB-Mean + TFB (Ours)	×	0.74 ± 0.02 0.55 ± 0.01	$0.73 \pm 0.04 \\ \underline{0.53 \pm 0.04}$	$\frac{0.29 \pm 0.03}{\textbf{0.23} \pm \textbf{0.02}}$	0.47±0.03 0.40±0.01	0.37 ± 0.02 0.33 ± 0.02	$0.32{\pm}0.02\\ \underline{0.27}{\pm}0.01$	0.67±0.07 0.52±0.05	0.39 ± 0.03 0.35 ± 0.02	1.53 ± 0.13 1.36 ± 0.13	1.54±0.15 1.46±0.11		

- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).

Table 7: Dataset Statistics. The size of the Anchor Set \mathcal{D} is used in Table 1, 3 and 14.

	WG-S	ARC-C	ARC-E	WG-M	OBQA	BoolQ	Combined
Size of Label Space	2	5	5	2	4	2	7
Size of Training Set	640	1,119	2,251	2,258	4,957	9,427	20,652
Size of Anchor Set \mathcal{D}	500 (78%)	500 (45%)	500 (22%)	500 (22%)	500 (10%)	500 (5%)	500 (2%)
Size of Test Set	1,267	299	570	1,267	500	3,270	7,173

- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among *other posterior families*.

		In-Distribution Datasets							Out-of-Distribution Datasets (OBQA \rightarrow X)				
Metric	Method								Small Shift		Large Shift		
		WG-S	ARC-C	ARC-E	WG-M	OBQA	BoolQ	Rk. (↓)	ARC-C	ARC-E	Chem	Phy	
	BLoB-Mean	$\underline{77.72 \scriptstyle{\pm 0.12}}$	$82.60{\scriptstyle\pm0.60}$	$\underline{91.64} {\scriptstyle\pm0.55}$	$\textbf{83.92} \scriptstyle{\pm 0.48}$	$88.00{\pm}0.80$	$\underline{89.86 {\scriptstyle\pm0.05}}$	2.50	$\underline{82.06{\scriptstyle\pm1.15}}$	88.54±0.31	39.93 ± 5.20	39.93 ± 4.02	
ACC (A)	+ TFB (FR)	75.57 ± 0.25	83.20 ± 0.65	91.58 ± 0.67	82.19 ± 1.09	88.73 ± 0.41	89.46 ± 0.17	2.83	81.33 ± 0.82	88.06 ± 0.75	42.00 ± 2.16	41.33±5.44	
$ACC (\uparrow)$	+ TFB (C-STD)	76.35 ± 0.08	83.20±0.33	91.33 ± 0.70	81.79 ± 0.51	88.20 ± 0.57	89.65 ± 0.08	3.00	$81.73{\scriptstyle\pm0.68}$	88.18 ± 0.65	43.00±1.41	39.33 ± 3.86	
	+ TFB (Final)	$\textbf{77.81} {\pm} \textbf{0.36}$	$\overline{83.33{\scriptstyle\pm0.19}}$	$\textbf{91.76} {\pm 0.48}$	$\underline{83.81{\scriptstyle\pm0.39}}$	$\overline{87.80{\scriptstyle\pm0.16}}$	$90.11 {\scriptstyle \pm 0.28}$	1.67	$\textbf{82.93} \!\pm\! 1.54$	$\overline{87.64{\scriptstyle\pm0.51}}$	$39.67{\scriptstyle\pm7.32}$	$37.33{\scriptstyle\pm6.65}$	
	BLoB-Mean	15.43 ± 0.15	12.41±1.52	4.91 ± 0.28	9.37±1.33	6.44 ± 0.15	$6.26{\scriptstyle\pm0.29}$	4.00	11.22 ± 0.38	6.34 ± 0.71	$26.65{\scriptstyle\pm3.06}$	25.40±5.40	
ECE (↓)	+ TFB (FR)	10.42 ± 0.29	7.45 ± 0.88	2.01 ± 1.03	4.36 ± 0.68	3.70 ± 1.04	3.62 ± 0.10	2.67	7.19 ± 1.40	3.29 ± 1.03	17.78 ± 1.01	19.14 ± 4.01	
ECE (\psi)	+ TFB (C-STD)	9.23 ± 0.20	5.98 ± 0.32	2.94 ± 0.67	3.86 ± 0.45	3.17 ± 0.21	$2.82{\scriptstyle\pm0.62}$	<u>1.83</u>	$6.89{\scriptstyle\pm0.89}$	2.76 ± 0.88	18.27 ± 2.52	19.45 ± 3.46	
	+ TFB (Final)	$\overline{\textbf{8.16} \pm 0.48}$	$\underline{6.48{\pm}0.36}$	$\underline{2.44{\pm}0.50}$	$\overline{3.83{\scriptstyle\pm0.43}}$	$\overline{\textbf{2.67} {\pm 0.18}}$	$\underline{3.10{\pm}0.59}$	1.50	$\overline{6.69 {\pm} 1.63}$	$3.61{\scriptstyle\pm0.87}$	18.45 ± 6.75	20.53 ± 6.27	
	BLoB-Mean	0.74 ± 0.02	0.73 ± 0.04	0.29 ± 0.03	0.47 ± 0.03	0.37 ± 0.02	0.32 ± 0.02	3.67	0.67 ± 0.07	0.39 ± 0.03	1.53±0.13	1.54±0.15	
NLL (↓)	+ TFB (FR)	0.60 ± 0.01	0.53 ± 0.03	0.23 ± 0.02	0.43 ± 0.01	0.33 ± 0.02	0.27 ± 0.01	2.00	0.57 ± 0.04	0.34 ± 0.02	$1.34{\pm0.07}$	1.42 ± 0.09	
	+ TFB (C-STD)	0.57 ± 0.01	$\overline{0.51\pm0.02}$	$\overline{0.22\pm0.01}$	$\overline{0.43\pm0.01}$	$\textbf{0.33} {\pm} \textbf{0.01}$	$\overline{0.26\pm0.01}$	1.33	0.56 ± 0.04	$\overline{0.33\pm_{0.02}}$	$1.34{\scriptstyle\pm0.08}$	$\overline{1.41 \pm 0.09}$	
	+ TFB (Final)	$\overline{0.55}$ ± 0.01	$\underline{0.53{\pm}0.04}$	$\underline{0.23{\pm}0.02}$	$\overline{0.40\pm0.01}$	$\textbf{0.33} {\pm} \textbf{0.02}$	$\underline{0.27{\pm0.01}}$	<u>1.50</u>	$\overline{0.52\pm0.05}$	$0.35{\scriptstyle\pm0.02}$	$\underline{1.36{\pm}0.13}$	1.46 ± 0.11	

- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among *other posterior families*.
- TFB works for various LLM backbones.

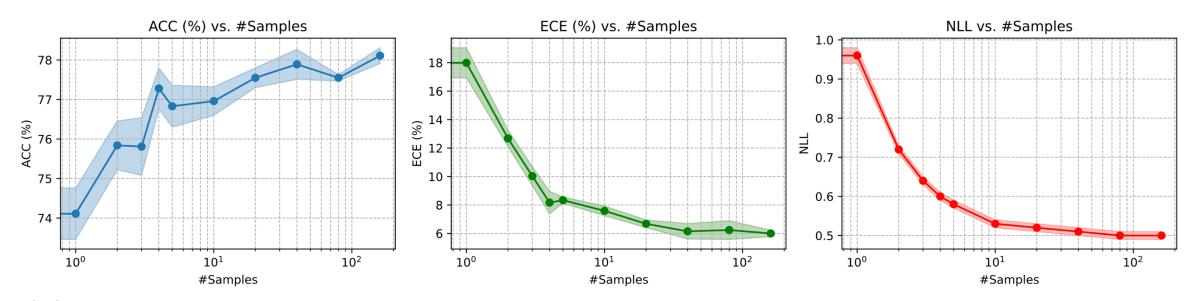
Table 3. Performance of different **LLM backbones** on the combined dataset of six commonsense reasoning tasks.

Method	ACC (†)	ECE (\downarrow)	$\mathbf{NLL}\;(\downarrow)$
Llama2-7B + TFB (Ours)	81.41 ± 0.64 81.32 ± 0.51	4.50 ± 0.37 1.24 ± 0.22	0.43 ± 0.00 0.43 ± 0.00
Llama3-8B	86.93±0.09	4.28±0.54	0.34 ± 0.00 0.34 ± 0.00
+ TFB (Ours)	86.61±0.20	1.64±0.64	
Llama3.1-8B	86.70 ± 0.08	4.74±0.28	0.35±0.00
+ TFB (Ours)	86.45±0.33	1.05 ±0.06	0.34 ± 0.00
Mistral-7B-v0.3	86.88±0.51	5.05±0.88	0.35 ± 0.02 0.33 ± 0.01
+ TFB (Ours)	86.64±0.28	1.68 ± 0.53	

- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among *other posterior families*.
- TFB works for various LLM backbones.
- TFB works beyond LoRA adapters.

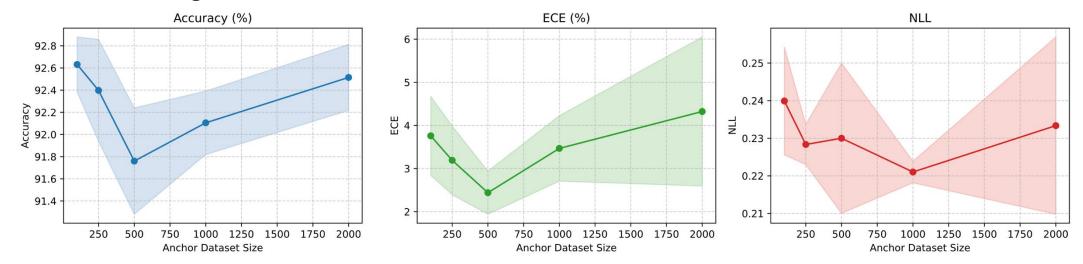
Table 4. Performance of different LoRA-like PEFT methods on the combined dataset of six commonsense reasoning tasks.

Method	ACC (†)	ECE (↓)	NLL (↓)
LoRA	$\pmb{86.70} {\scriptstyle \pm 0.08}$	4.74 ± 0.28	0.35 ± 0.00
+ TFB (Ours)	86.45 ± 0.33	$1.05{\pm0.06}$	$\textbf{0.34} {\pm} \textbf{0.00}$
VeRA	84.93±0.50	5.11±0.55	0.39 ± 0.01
+ TFB (Ours)	$84.28{\pm0.48}$	$1.44{\pm0.44}$	$\textbf{0.38} {\pm} \textbf{0.01}$
PiSSA	86.83±0.51	4.26±0.14	0.35±0.00
+ TFB (Ours)	86.61 ± 0.43	$\boldsymbol{1.17} {\pm 0.22}$	$0.33 {\pm} 0.00$



- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among *other posterior families*.
- TFB works for various LLM backbones.
- TFB works beyond LoRA adapters.
- TFB achieves significant improvement in terms of efficiency.

	Dotob		Datasets										
Method	Method Batch WG-S		G-S	ARC-C		ARC-E		WG-M		OBQA		BoolQ	
		Time (s)	Mem. (MB)										
LoRA	4	338	12,894	632	19,762	1,238	18,640	1,339	13,164	2,692	17,208	6,489	29,450
BLoB	4	371 (1.10x)	13,194 (1.02x)	685 (1.08x)	21,736 (1.10x)	1,360 (1.10x)	20,700 (1.11x)	1,476 (1.10x)	13,194 (1.00x)	3,257 (1.21x)	18,046 (1.05x)	7,251 (1.12x)	30,578 (1.04x)
TFB (Ours)	4	1,203 (3.56x)	10,372 (0.80x)	1,257 (1.99x)	11,966 (0.61x)	1,246 (1.01x)	11,202 (0.60x)	1,237 (0.92x)	10,344 (0.79x)	1,238 (0.46x)	10,376 (0.60x)	1,452 (0.22x)	16,340 (0.55x)
TFB (Ours)	8	628 (1.86x)	10,666 (0.83x)	731 (1.16x)	15,286 (0.77x)	702 (0.57x)	12,598 (0.68x)	634 (0.47x)	10,662 (0.81x)	642 (0.24x)	12,116 (0.70x)	1,015 (0.16x)	22,146 (0.75x)
TFB (Ours)	12	446 (1.31x)	12,064 (0.93x)	599 (0.94x)	18,204 (0.92x)	540 (0.43x)	14,310 (0.76x)	441 (0.32x)	11,370 (0.86x)	487 (0.18x)	13,410 (0.77x)	908 (0.13x)	25,220 (0.85x)



- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among other posterior families.
- TFB works for various LLM backbones.
- TFB works beyond LoRA adapters.
- TFB achieves significant improvement in terms of efficiency.
- TFB improves w/ Scaling Test-Time Compute

- TFB improves accuracy & uncertainty estimation across trained LoRA checkpoints (MLE, MAP, BLoB).
- TFB works perfectly with *small amount of data* (for search).
- TFB works the best among *other posterior families*.
- TFB works for various LLM backbones.
- TFB works beyond LoRA adapters.
- TFB achieves significant improvement in terms of *efficiency*.
- TFB improves w/ Scaling Test-Time Compute.
- TFB is robust against anchor dataset size.

References

- [1] Xiong et al. Can Ilms express their uncertainty? an empirical evaluation of confidence elicitation in Ilms. arXiv preprint arXiv:2306.13063, 2023.
- [2] Tian et al. Just ask for calibration: Strategies for eliciting calibrated confidence scores from language models fine-tuned with human feedback. EMNLP, 2023.
- [3] Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR, 2021
- [4] Wang et al. LoRA Ensembles for Language Model Fine-tuning. arXiv preprint arXiv:2310.00035, 2023
- [5] Gal et al. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML, 2016
- [6] Yang et al. Bayesian Low-rank Adaptation for Large Language Models. ICLR, 2024
- [7] Wang et al. BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models. NeurIPS, 2024
- [8] Wen et al. Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches. ICLR, 2018
- [9] Blundell et al. Weight Uncertainty in Neural Networks. ICML, 2015
- [10] Shi et al. Training-Free Bayesianization for Low-Rank Adapters of Large Language Models. arXiv preprint arXiv:2412.05723, 2024

10/20/2025