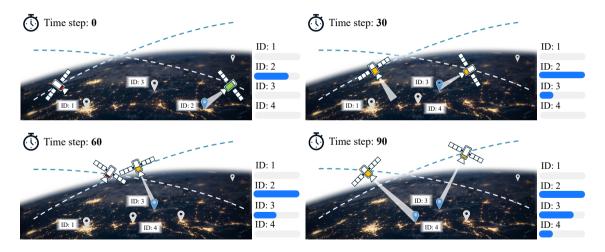
Towards Realistic Earth-Observation Constellation Scheduling: Benchmark and Methodology


Luting Wang^{1#} Yinghao Xiang^{1#} Hongliang Huang¹
Dongjun Li¹ Chen Gao^{1*} Si Liu^{1*}

 1 Beihang University $^{\#}$ Equal Contribution * Corresponding Authors

Friday, November 07

- Introduction
- 2 AEOS-Bench: Benchmark Suite
- AEOS-Former: Proposed Method
- 4 Experiments
- Conclusion

Introduction

Problem Overview

Agile Earth Observation Satellites (AEOSs)

Rapid and flexible Earth surface monitoring

Cooperative constellation operations Increased revisit frequency and coverage

Applications

Disaster response

Environmental monitoring

Resource management

The Scheduling Problem

Goal

Maximize task completion

Minimize time and resource expenditure

Satisfy all real-world constraints

Key Challenges

Large Scale

Dynamic Environment

Strict Constraints

Key Challenges

Modern constellations: large

Imaging requests: hundreds of tasks

Exhaustive search is infeasible

Strains heuristic and RL methods

Challenge 2: Dynamic Environment

Tasks appear or expire at any moment Satellite status changing

Satellites may join or leave

⚠ Challenge 3: Strict Constraints

Available battery energy limits

Satellite's attitude control

Allowable time windows for each task

Duration time differs from task to task

Any violation \Rightarrow task failure

Introduction

Contribution 1: AEOS-Bench

A standardized benchmark suite for realistic AEOS constellation scheduling

High-fidelity simulation platform (Basilisk engine)

Ground truth scheduling annotations including 16,410 diverse scenarios which contains **3.907** finely-tuned satellite assets

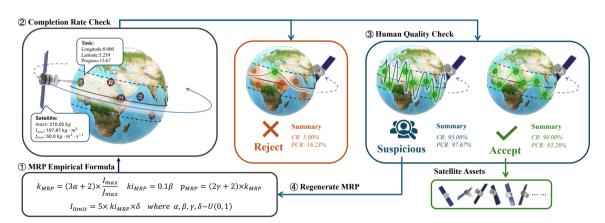
First large-scale benchmark for realistic constellation scheduling

Contribution 2: AEOS-Former

A Transformer-based scheduling model with novel components

Constraint-aware attention mechanism and Simulation-based iterative learning Internal constraint module for physical/operational limits

Outperforms baselines in task completion and energy efficiency


- Introduction
- 2 AEOS-Bench: Benchmark Suite
- AEOS-Former: Proposed Method
- 4 Experiments
- Conclusion

Motivation for a New Benchmark

AEOS-Bench Features

- 1 Large-Scale: 16,410 scenarios on various satellites
- 2 Realism: High-fidelity simulation based on Basilisk
- 3 Comprehensiveness: 6 evaluation metrics

Aspect	Previous Benchmarks	AEOS-Bench		
Number of scenarios	< 10	16,410		
Satellite assets	Limited	3,907		
Physical simulation	Simplified	High-fidelity		

AEOS-Former: Proposed Method

Satellite Asset Generation

Challenge: Attitude Control Stability

The MRP-based attitude control system requires careful parameter tuning:

Control gains: govern adjustment speed

Actuator limits: prevent destabilization

Low gains or Overloaded actuators ⇒ task failures

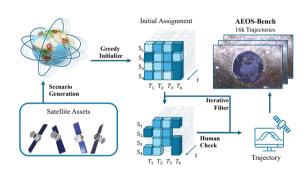
Asset Generation Process

- 1 Sample satellite parameters
- **2** Tune control parameters
- 3 Validate in simulation
- 4 Ensure reliable on-orbit performance

Annotation Pipeline

Three-Stage Pipeline

1 Distance-based Initialization


Simple and intuitive baseline Problem: tasks too close ⇒ attitude control failures

2 Iterative Filter Stage

Remove infeasible assignments Validate in simulation Refine scheduling strategies

3 Human Quality Review

Final validation
Ensure reliable annotations

Benchmark Statistics

Dataset Splits

Introduction

Split	Scenarios	Satellites	
Train	16,218	2,907	
Val-Seen	64	Same as train	
Val-Unseen	64	500 (new)	
Test	64	500 (real data)	

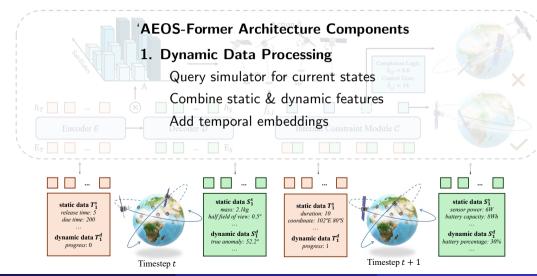
Scenario Composition

Satellites per scenario: 1 to 50

Tasks per scenario: 50 to 300

Timesteps: 3.600

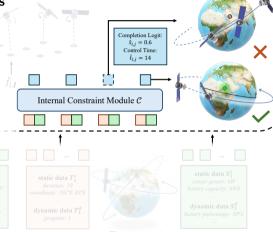
Satellite Asset Distribution

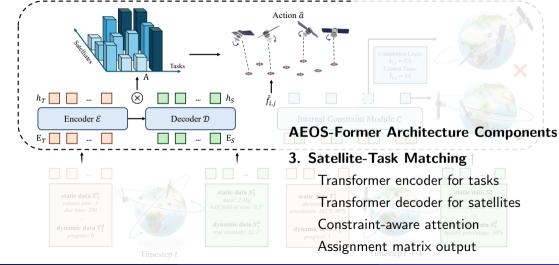

Orbital parameters: approximately random distribution

Smaller constellations: more frequent

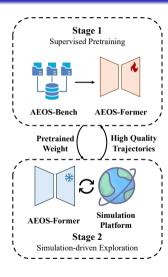
Larger task counts: more frequent

Test split: real satellite data from N2YO and Gunter's Space Page


- Introduction
- 2 AEOS-Bench: Benchmark Suit
- 3 AEOS-Former: Proposed Method
- 4 Experiments
- Conclusion



'AEOS-Former Architecture Components


2. Internal Constraint Module

Predicts feasibility probability Estimates minimal control time Generates constraint-driven mask

AEOS-Former: Proposed Method

AEOS-Former Architecture Components 4. Iterative Learning

Supervised pretraining

Simulation-driven exploration

High-quality trajectory collection

Continuous refinement

- 1 Introduction
- 2 AEOS-Bench: Benchmark Suite
- 3 AEOS-Former: Proposed Method
- 4 Experiments
- Conclusion

Evaluation Metrics

Six Evaluation Metrics **Task Completion Metrics**

1 Completion Rate (CR)

Proportion of completed tasks

2 Partial Completion Rate (PCR)

Ratio of maximum progress to required duration

3 Weighted Completion Rate (WCR)

Weighted version considering task durations

Comprehensive Score (CS)

$$CS = (w_{CR} \cdot CR + w_{PCR} \cdot PCR + w_{WCR} \cdot WCR)^{-1} + w_{TAT} \cdot TAT + w_{PC} \cdot PC$$
 (1)

where $w_{CR} = 0.6$. $w_{PCR} = 0.2$. $w_{A/CR} = 0.2$. $w_{TAT} = 1/7$. $w_{PC} = 1/100$

Efficiency Metrics

4 Turn-Around Time (TAT)

Average time to complete tasks Reflects scheduling efficiency

5 Power Consumption (PC)

Total energy consumed by sensors Measured in Wh

Main Results

Split	Method	$cs\downarrow$	CR/%	PCR/%	WCR/%	TAT/h \downarrow	$\mathbf{PC/Wh}\downarrow$
Val Unseen	Random	90.27	1.08	1.33	1.02	0.17	142.27
	HAAL	77.17	1.28	1.46	1.28	0.25	155.36
	REDA	21.54	4.83	5.75	4.85	0.71	153.95
	MSCPO-SHCS	5.21	35.35	39.45	34.85	7.27	140.83
	AEOS-Former (Ours)	4.43	35.42	38.93	35.14	6.78	68.99
Test	Random	113.53	0.85	1.02	0.88	0.17	150.54
	HAAL	94.83	1.05	1.17	1.03	0.25	155.56
	REDA	28.21	3.65	4.27	3.58	0.73	154.49
	MSCPO-SHCS	7.33	19.44	24.00	18.71	6.23	149.20
	AEOS-Former (Ours)	6.28	19.25	22.31	18.73	5.67	40.91

Performance Analysis

Introduction

Performance Analysis: Scaling Behavior Impact of Number of Satellites (N_S)

As N_S increases $(1 \rightarrow 50)$:

CS initially decreases

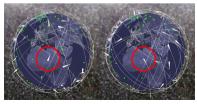
Stabilizes between 31–40

CR consistently increases

Trade-off between completion and resource consumption

Impact of Number of Tasks (N_T)

As N_T increases:


Lower completion rates

More resource consumption

CS slightly increases

CR slightly decreases

More tasks \Rightarrow harder scheduling

- Introduction
- 2 AEOS-Bench: Benchmark Suite
- 3 AEOS-Former: Proposed Method
- 4 Experiments
- Conclusion

Summary and Future Work

Summary of Contributions

AEOS-Bench: Benchmark Suite

First large-scale benchmark for realistic AEOS constellation scheduling

3.907 satellite assets + 16,410 scenarios

High-fidelity simulation with realistic constraints

Comprehensive evaluation (6 metrics)

AEOS-Former: Scheduling Model

Novel **internal constraint module** for physical/operational limits

Transformer-based architecture with constraint-aware attention

Simulation-based iterative learning for continuous improvement