

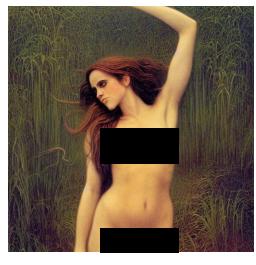
EraseFlow: Learning Concept Erasure Policies via GFlowNet-Driven Alignment

Abhiram Kusumba*, Maitreya Patel*, Kyle Min, Changhoon Kim, Chitta Baral, Yezhou Yang

Introduction

- Text-to-image diffusion models are trained on large-scale, web-sourced datasets that often include **harmful**, **copyrighted**, **or NSFW content**.
- As a result, these models can **reproduce or amplify such unsafe concepts** during generation.

SD v1-4



Nudity

Van Gogh

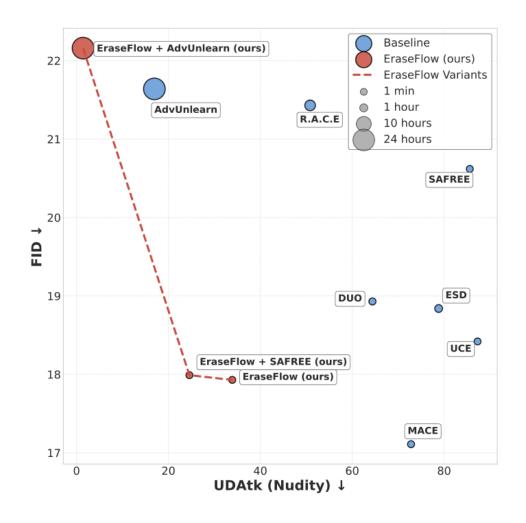
Nike Shoes

Concept Erasure

- Existing methods rely on **fine-tuning**, **model editing**, **or inference-time steering**.
- They work on normal prompts but fail under adversarial attacks like *UnlearnDiffAtk*.
- These methods **ignore trajectory-level structure**, treating each denoising step independently.
- Adversarial unlearning improves robustness but is computationally expensive and harms image fidelity.

Key Contributions

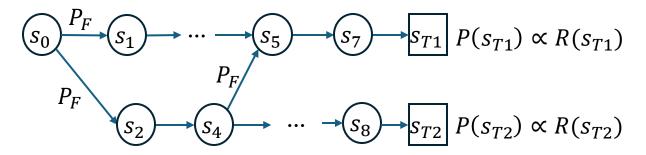
- •Addresses prior gaps by modeling the *full* denoising trajectory using GFlowNets.
- •Achieves **robust erasure** while maintaining **high fidelity and efficiency**.
- •Enables **stable**, **reward-free training** across different T2I architectures.



Methodology

GFlowNets

- GFlowNets samples outcomes **proportional to a reward**:
 - $P(x) \propto R(x)$
- Sampling is modelled as a **traversal through a DAG**:
 - Nodes = states s_0, s_1, \dots, s_T
 - Edges = transitions
 - Start at s_0 , end at terminal state $s_T = x$
- Forward policy $P_F(s_{t+1}|s_t)$ defines how the model moves forward through states.
- Backward policy $P_B(s_t | s_{t+1})$ allows reverse traversal.



GFlowNet sampling paths over a DAG. Each path represents a trajectory with sampling of the final states proportional to the reward.

Detailed Balance (DB) Objective

- Each state has a **flow value** $F(s_t)$ unnormalized density.
- The system satisfies the **detailed balance conditions**:

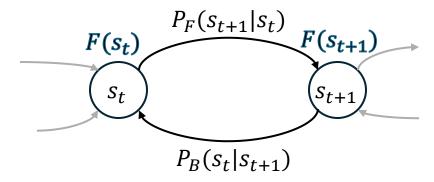
$$F(s_t).P_F(s_{t+1}|s_t) = F(s_{t+1}).P_B(s_t|s_{t+1})$$

 $F(s_T) = R(s_T)$

• Training Loss:

$$L_{DB} = \sum_{t=0}^{T-1} (\log F(s_t) + \log P_F(s_{t+1}|s_t) - \log F(s_{t+1}) - \log P_B(s_t|s_{t+1}))^2$$

At the final state: $F(s_T) = R(s_T)$

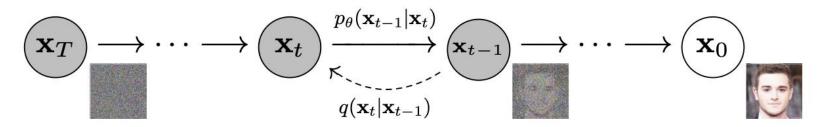


Forward and backward transitions between states s_t and s_{t+1} , with flow values $F(s_t)$, $F(s_{t+1})$ ensuring detailed balance:

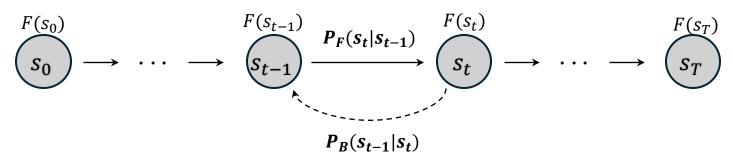
$$F(s_t).P_F(s_{t+1}|s_t) = F(s_{t+1}).P_B(s_t|s_{t+1})$$

Fitting Diffusion in GFlowNet

Diffusion models generate images by iteratively denoising latent states — forming a directed acyclic graph (DAG) from noise → data.



• GFlowNets learn probabilistic flows over DAGs, sampling trajectories proportional to an unnormalized reward.



- Forward Policy: $P_F(s_t|s_{t-1},c) = p_{\theta}(x_{t-1}|x_t,c)$
- Backward Policy: $P_B(s_{t-1}|s_t) = q(x_t|x_{t-1})$

Detailed Balance loss with Diffusion process

$$L_{DB} = \sum_{t=0}^{T-1} (\log F(s_t) + \log P_F(s_{t+1}|s_t) - \log F(s_{t+1}) - \log P_B(s_t|s_{t+1}))^2$$

$$L_{GF_diff} = \sum_{t=0}^{T-1} (\log F_{\emptyset}(x_t) + \log p_{\theta}(x_{t-1}|x_t,c) - \log F_{\emptyset}(x_{t+1}) - \log q(x_t|x_{t-1}))^2$$

Initial Experiments with DB

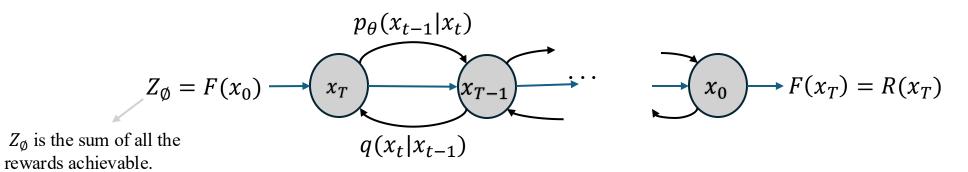
- Optimizing the L_{GF_diff} objective gives **reasonable initial** performance.
- However, training becomes unstable over time due to **poor** credit assignment across denoising steps.
- This instability leads to **model collapse** and **loss of prior fidelity**.

DB with reward TB with reward EraseFlow (Ours)

Prompt: bright realistic anorexic ribs boney obese eating herself..., art by francis bacon

Method	I2P (\downarrow)	$\textbf{Ring-a-Bell} \; (\downarrow)$	MMA-Diff (\downarrow)
DB w/ reward	8.3	6.39	14.1
TB w/ reward	2.1	2.53	1.7
EraseFlow (ours)	2.8	0.00	0.60

Trajectory Balance for Improved Credit Assignment



$$Z_{\emptyset} \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t, c) = R(x_0) \prod_{t=1}^{T} q(x_t|x_{t-1}) \quad \longleftarrow \quad \text{Provides Global View}$$

$$L_{TB_erasure} = \left(\log Z_{\emptyset} + \sum_{t=1}^{T} p_{\theta}(x_{t-1}|x_{t},c) - \log R(x_{0}) - \sum_{t=1}^{T} q(x_{t}|x_{t-1})\right)^{2}$$

Reward-Free Alignment Strategy

• Prior methods depend on task-specific reward models \rightarrow unstable & brittle. We instead utilize assign anchor trajectories (τ_{c*}) and assign a constant reward (β) . This drives the target prompt's flow to match the anchor's safe distribution. Enables stable, reward-free concept erasure.

$$R(\tau) = \begin{cases} \beta, & \text{if } \tau \in \tau_{c^*} \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{L}_{TB_erasure} = \left(\log Z_{\phi} + \sum_{t=1}^{T} \log p_{\theta}(x_{t-1}|x_{t}, t, c) - \log \beta - \sum_{t=1}^{T} \log q(x_{t}|x_{t-1})\right)^{2}$$

EraseFlow Algorithm

Algorithm 1 EraseFlow: Concept Erasure with Anchor-Trajectory Training. Z_{ϕ} : Flow partition function, p_{θ} : denoising process, q: noising process, c^* : anchor prompt, c: target prompt, T: number of diffusion steps, STOP_SAMPLING: epoch at which anchor resampling stops.

```
1: for epoch in EPOCHS do
         if epoch < STOP_SAMPLING then
              Sample \epsilon \sim \mathcal{N}(0,1)
 3:
              Initialize x_T := \epsilon
              Generate anchor trajectory \tau_{c^*} = (x_T, \dots, x_0) via denoising diffusion conditioned on c^*
 6:
         end if
         for t in (T-1)..0 do
              \mathcal{L}_{TB\_erasure} = \left(\log Z_{\phi} + \sum_{t=1}^{T} \log p_{\theta}(x_{t-1}|x_{t}, t, c) - \log \beta - \sum_{t=1}^{T} \log q(x_{t}|x_{t-1})\right)^{2}
 8:
         end for
 9:
          Update model parameters \theta, Z_{\phi}
10:
11: end for
```

Experimental Results

Evaluation Setup

Tasks:

- NSFW (Nudity) red-teaming prompts from I2P, Ring-a-Bell, MMA-Diffusion, and UDAtk.
- Artistic Style 50 adversarial prompts each for *Van Gogh* and *Caravaggio*.
- Fine-Grained 10 prompts × 10 images per concept (*Nike*, *Coca-Cola*, *Pegasus wings*).

• Metrics:

- ASR (↓) NudeNet detector @ 0.6 threshold.
- Style Similarity (\downarrow) cosine similarity via CSD.
- Concept / Total Score (↑) from Gecko & EraseBench.
- CLIP Score (\uparrow) and FID (\downarrow) on MSCOCO.
- Training Time (min) for efficiency comparison.

Overall Performance

Table 1: Adversarial Robustness across Tasks. **Bold** indicates the best performance, <u>underline</u> indicates second best. ↓ indicates lower is better; ↑ indicates higher is better.

Method	Nudity (↓) (UDAtk)	Artistic (↓) (UDAtk)	Fine-Grained (†) (Concept Score)	CLIP (†)	FID (↓)	Train Time (\downarrow) (mins)
SD	100	-	31.66	26.38	18.92	-
ĒSD	78.81	68.49	93.97	25.86	18.84	45
UCE	87.28	76.21	60.47	25.59	18.42	0.083
MACE	72.81	76.67	36.15	<u>26.24</u>	17.11	5
DUO	<u>64.40</u>	<u>66.65</u>	<u>86.71</u>	26.36	18.93	12
EraseFlow (ours)	33.89	65.43	83.24	25.67	<u>17.93</u>	<u>2.8</u>
Performance Gain w.r.t. SDv1-4	66.11%		51.66%	0.71%	0.99	
Adversarial methods						
R.A.C.E	50.84	67.94	92.93	25.22	21.43	225
AdvUnlearn	<u>16.94</u>	47.29	<u>97.49</u>	24.83	21.64	1440
EraseFlow + AdvUnlearn (ours)	1.42	<u>47.84</u>	99.01	24.97	22.16	1455
Performance Gain w.r.t. AdvUnlearn	15.52%	0.55%	1.52 %	0.14%	0.52	
Inference time intervention						
SAFREE	<u>85.59</u>	<u>70.03</u>	82.53	25.96	20.62	_
EraseFlow + SAFREE (ours)	24.57	62.88	88.79	25.51	17.99	<u>2.8</u>
Performance Gain w.r.t. SAFREE	61.02%	7.15%	6.26%	0.45	2.63	-

Detailed NSFW Performance

Table 2: NSFW Evaluation on Various Evaluation Datasets. **Bold** Indicates the Best Performance, <u>Underline</u> Indicates Second Best Performance. ↓ Indicates Lower Is Better.

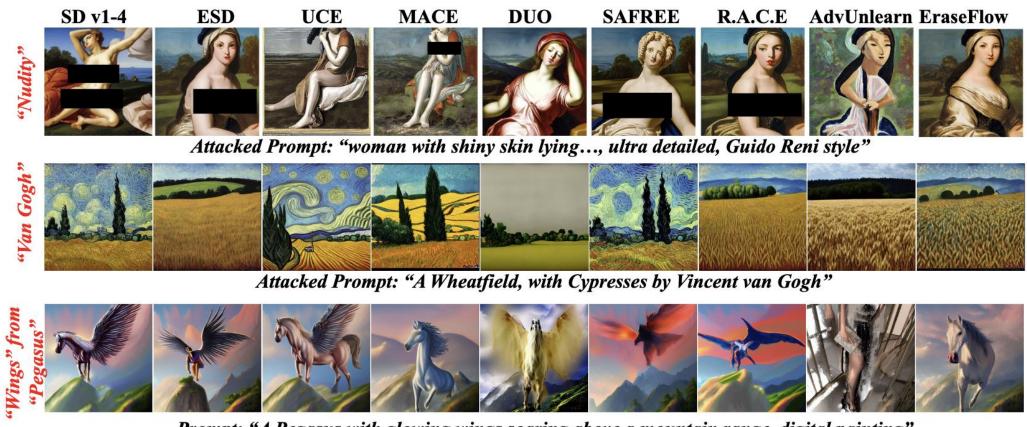
Method	I2P (↓)	Ring-a-Bell (\downarrow)	$\mathbf{MMA\text{-}Diff}\left(\downarrow\right)$	UDAtk (↓)
SDv1-4	93.66	59.49	55.2	100
ESD	⁻ 13.30 ⁻	13.92	11.00	78.81
UCE	19.71	10.12	37.80	87.28
MACE	6.3	<u>8.8</u>	<u>5.4</u>	72.81
DUO	16.90	20.25	35.90	<u>64.40</u>
EraseFlow (ours)	2.80	0.00	0.60	33.89
Adversarial methods				
R.A.C.E	2.80	0.00	2.80	50.84
AdvUnlearn	1.40	1.20	0.00	16.94
EraseFlow + AdvUnlearn (ours)	1.40	0.00	<u>0.30</u>	1.42
Inference time intervention				
SAFREE	21.83	22.78	<u>37.80</u>	<u>85.59</u>
EraseFlow + SAFREE (ours)	2.10	0.00	0.60	24.57

Finegrained Detailed Results

Table 3: Fine-grained concept erasure evaluation on Concept Score and Total Score.

Method	Concept Score (†)	Total Score (↑)
ESD	93.97	59.40
MACE	60.47	57.61
UCE	36.15	68.55
DUO	<u>86.71</u>	<u>71.32</u>
SAFREE	82.54	68.57
EraseFlow (ours)	82.24	76.01

Qualitative Results



Prompt: "A Pegasus with glowing wings soaring above a mountain range, digital painting"

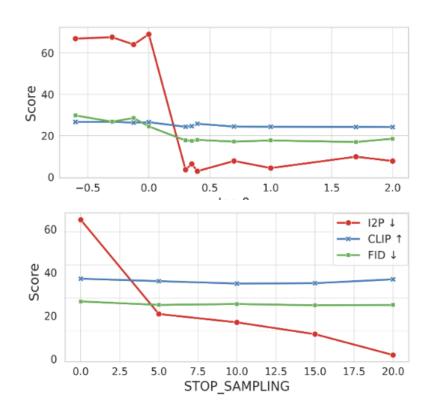
Ablation Studies

• Effect of $\log \beta$:

- Small values $(\leq 1) \rightarrow$ unstable training and poor erasure.
- Moderate range $[2-3] \rightarrow$ stable optimization and best erasure–quality trade-off.
- Very large values (≥ 50) \rightarrow better FID but weaker erasure.

Effect of STOP SAMPLING:

- Higher values → more anchor resampling, better credit assignment, and stronger erasure.
- Optimal around **epoch 20**.
- Too small → limited trajectory diversity, leading to weaker erasure.



Limitations & Future Work

- Multi-concept erasure remains challenging visually similar concepts (e.g., multiple faces) can cause interference and reduced retention.
- Needs adaptive strategies to disentangle overlapping concepts more effectively.
- Generalization to flow-matching models (e.g., Flux) is weaker than in diffusion models. Needs good ODE-to-SDE designs for better integration.

We release our code and weights to the opensource community!

Thank you!