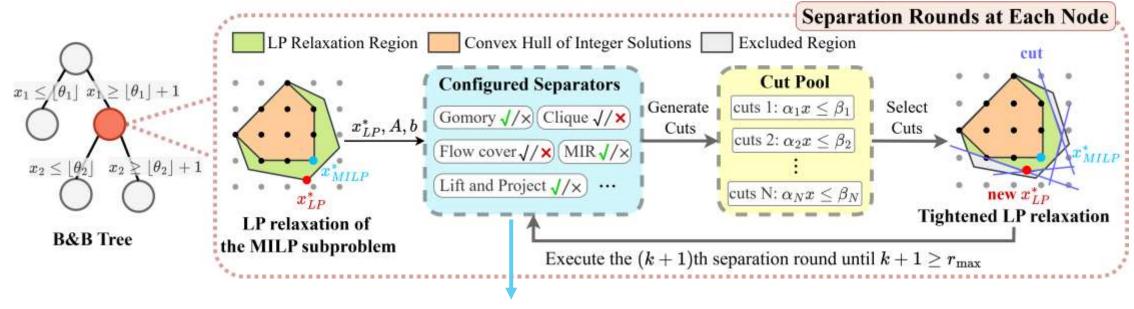
Dynamic Configuration for Cutting Plane **Sep**arators via Reinforcement Learning on Incremental Graph

Presenter: Mingxuan Ye, Ph.D. Student

Advisor: Prof. Feng Wu, Prof. Jie Wang

MIRA Lab, University of Science and Technology of China

2025/11/05

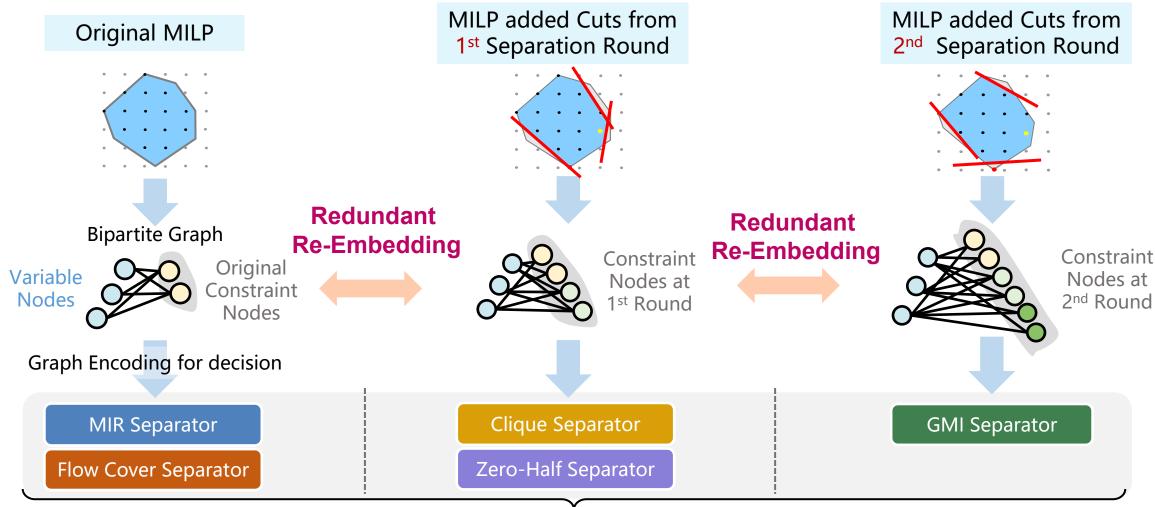


Background: How Cuts Are Born in MILP Solver

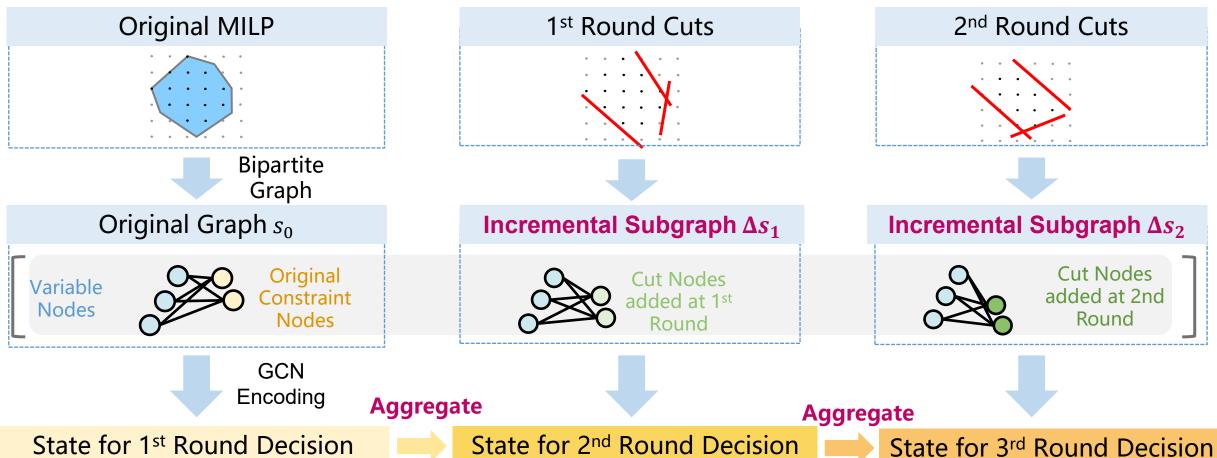
- <u>Cutting planes (cuts)</u> are essential for solving mixed-integer linear programming (MILP) problems, as they tighten the feasible solution space and accelerate the solving process.
- **Separators: cutting plane algorithms** built in MILP solver (e.g., Gomory cuts, Clique cuts).
- **Separator configuration:** Determine which separators to activate and how aggressively to activate. The configuration of separators determines the quality of candidate cuts and thus the solver's convergence behavior.
- Multiple Separation Rounds in MILP Solver:

Separator Set (√ : activate × : deactivate)

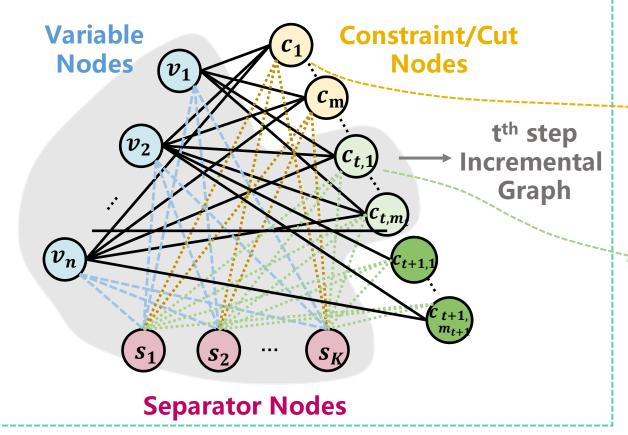
Motivation: The Optimal Separators Choice Keep Changing

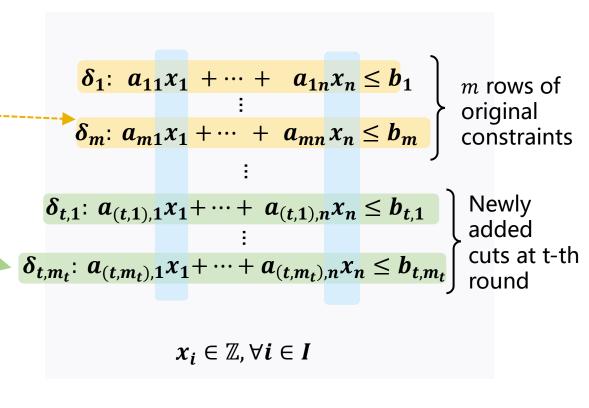

Cut passes induce the evolving MILPs...

Evolving MILPs Require Round-Aware Separator Reconfiguration

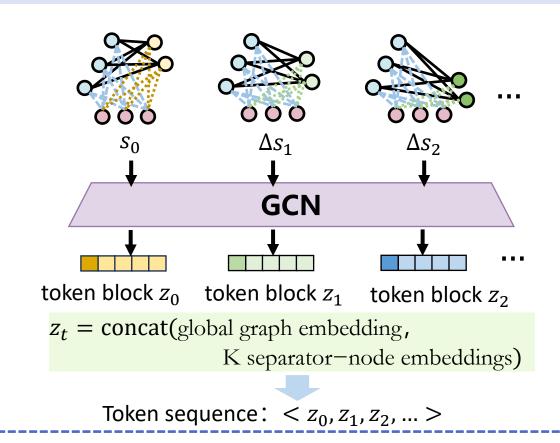

Motivation: Eolving Graph & Redundant Re-Embedding

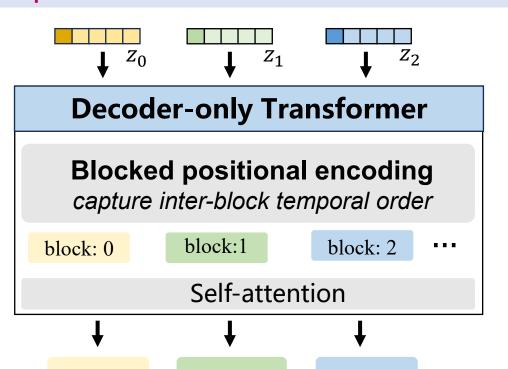
Insight: Computing the Incremental Graph at each decision




Aggregate current-round incremental changes with history to form the full decision state

Method-Step 1: Triplet Graph Modeling





Method-Step 2: Sequential Encoding & Tokenizer the Incremental Graph

Encode each round's incremental subgraph as a token block and arrange a temporal token sequence

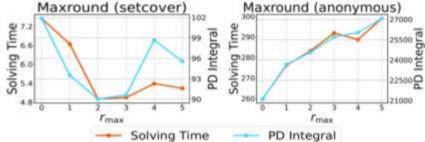
- Autoregressive decision model with blocked PE;
- captures inter-block order and retains permutation equivariance inside each block

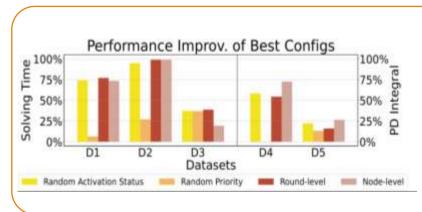
Action a_1

Action a_2

Action a_0

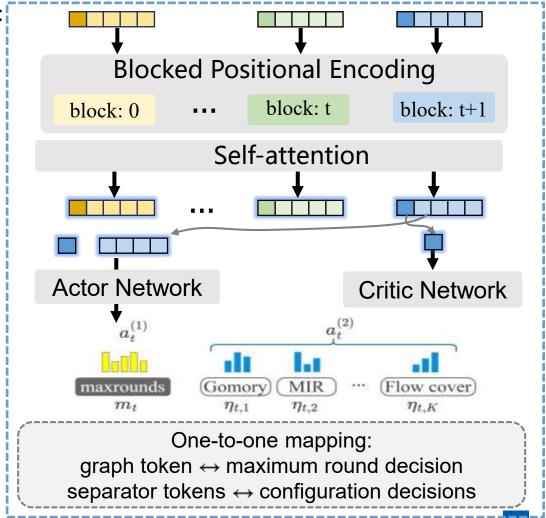
Method-Step 3: Decision Modeling

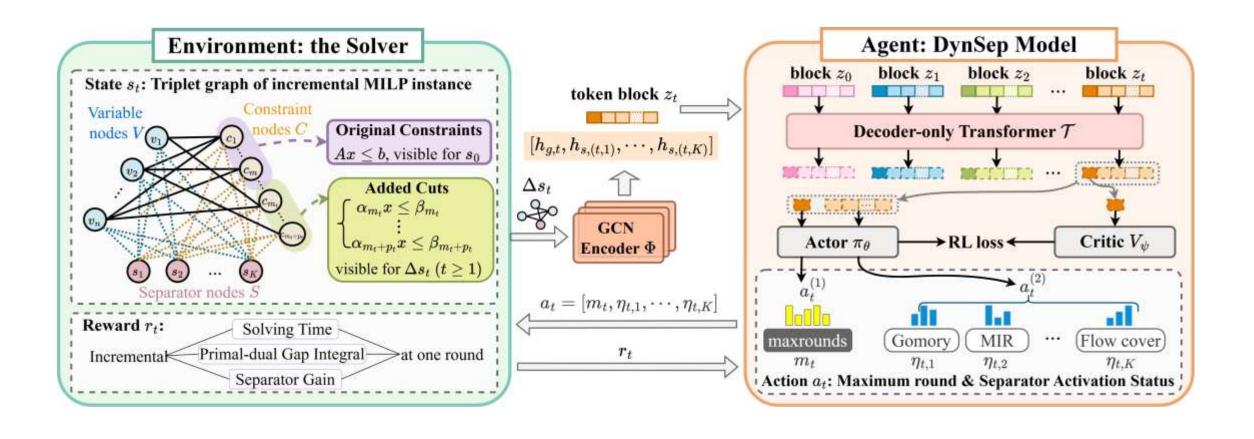

Evolving MILPs Require Round-Aware Separator configuration:


Decide when to stop separation round:

Performance is highly sensitive to $r_{\rm max}$; More rounds do not necessarily perform better.

Maxround (setcover)


Maxround (anonymous)


Decide which separators to activate:

Proper round-aware configurations yield obvious performance gains.

Method: Overall RL Formulation

Experiments: Main Evaluation

- 64% time speed-up on easy/medium datasets
- 16% PD-integral reduction on hard datasets

Table 1: Comparative evaluation on easy, medium, and hard datasets. Best performance is in bold, with the greatest improvement (Improv.) both bolded and underlined. Sizes of nine benchmarks are in parentheses, with n and m representing the average numbers of variables and constraints, respectively. The values report the mean (standard deviation) of time and PD integral metrics.

	Easy: Set Co	vering $(n = 1)$	000, m = 500)	Easy: Max In	dependent Set	(n = 500, m = 1953)	Easy: Multiple Knapsack ($n = 720, m = 72$)		
Method	Time(s) ↓	Improv. † (time, %)	PD integral	Time(s) ↓	Improv. † (time, %)	PD integral ↓	Time(s) ↓	Improv. † (time, %)	PD integral ↓
NoCuts	7.45 (5.87)	NA	101.86 (55.59)	15.32 (5.82)	NA	146.4 (56.99)	13.84 (28.79)	NA	25.21 (26.6)
Default	5.24 (1.79)	29.66	95.56 (36.86)	30.4 (8.02)	-98.43	289.51 (103.81)	2.01 (1.82)	85.48	18.6 (10.49)
Search(50)	1.7 (0.44)	77.18	36.77 (8.48)	4.42 (3.89)	71.15	23.28 (19.02)	4.12 (5.52)	70.23	13.38 (7.36)
Prune	7.45 (5.14)	0.00	66.83 (45.97)	5.03 (3.18)	67.17	30.93 (22.39)	0.64 (0.48)	95.38	9.89 (3.82)
L2Sep(R1)	6.56 (4.35)	11.95	62.12 (39.08)	5.42 (3.86)	64.62	34.21 (25.97)	7.45 (12.07)	46.17	12.99 (8.66)
L2Sep(R2)	7.35 (4.88)	1.34	70.00 (43.57)	5.36 (3.76)	65.01	33.94 (25.33)	9.14 (12.89)	33.96	14.40 (8.72)
LLM4Sepasel	11.73 (12.09)	-57.45	110.73 (91.14)	5.13 (4.19)	66.51	27.18 (20.17)	4.8 (5.51)	65.32	17.79 (8.9)
DynSep (Ours)	1.51 (0.27)	79.73	33.88 (9.34)	0.53 (0.20)	96.54	9.66 (2.40)	0.52 (0.24)	96.24	9.71 (5.39)

	Medium:	Corlat $(n = -$	466, m = 486	n = 486) Medium: MIK ($n = 413$, $m = 346$)				Hard: Anonymous ($n \approx 37881$, $m = 49603$)			
Method	Time(s) ↓	Improv. † (time, %)	PD integral	Time(s) ↓	Improv. 7 (time, %)	PD integral	Time(s) \(\preceq \)	PD integral	Improv. † (PD Int., %)		
NoCuts	74.66 (122.23)	NA.	2687.68 (6209.48)	190.28 (113.97)	NA	887.85 (859.76)	259.77 (75.71)	21117.12 (9234.01)	NA		
Default	111.55 (132.19)	-49.41	10573.14 (13070.46)	16.65 (18.06)	91.25	82.80 (56.24)	298.92 (4.09)	27069.58 (4892.8)	-28.19		
Search(50)	55.74 (97.19)	25.34	2910.77 (6585.5)	24.99 (20.56)	86,87	89.27 (55.85)	270.68 (65.52)	24028.68 (9007.57)	-13.79		
Prune	89.09 (125.52)	-19.33	2615.71 (5814.74)	300.01 (0.0)	-57.67	2237.28 (1023.8)	241.75 (100.61)	17304.91 (9563.3)	18.05		
L2Sep(R1)	91.14 (124.12)	-22.07	3124.07 (6914.50)	15.50 (17.60)	91.85	61.09 (44.50)	239.52 (94.82)	16970.35 (10108.40)	19.64		
L2Sep(R2)	89.84 (124.30)	-20.33	3113.29 (6927.16)	11.13 (9.09)	94.15	44.69 (25.06)	240.54 (93.80)	16850.57 (10052.83)	20.20		
LLM4Sepasel	64.03 (110.63)	14.24	2921.73 (6860.21)	17.94 (17.76)	90.57	85,66 (65,34)	284.57 (34.79)	25384.48 (8100.56)	-20.21		
DynSep (Ours)	22.96 (38.93)	69.25	2233.42 (3868.43)	10.99 (9.44)	94.22	134.15 (44.21)	241.89 (100.75)	15656.7 (8996.14)	25,86		

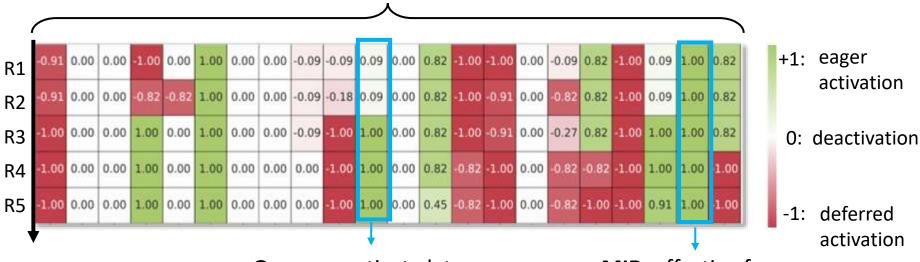
	Hard: Load Balancing ($n = 61000$, $m = 64304$)			Hard: MIPLIB	mixed neos $(n = 6958)$.	m = 5660)	Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)		
Method	Time(s) ‡	PD integral	Improv. † (PD Int., %)	Time(s) ‡	PD integral ↓	Improv. † (PD Int., %)	Time(s) ↓	PD integral ‡	Improv. † (PD Int., %)
NoCuts	300.11 (0.02)	15093.26 (940.68)	NA	275.04 (43.23)	14618.53 (12214.63)	NA	181.26 (120.25)	12959.99 (10506.47)	NA
Default	300.14 (0.02)	15187.19 (936.38)	-0.62	282.98 (29.49)	18500.5 (9386.15)	-26.56	244.75 (105.8)	21561.09 (10434.42)	-66.37
Search(50)	300.04 (0.05)	3783.52 (448.59)	74.93	274.23 (44.64)	15619.98 (11969.47)	-6.85	133.36 (131.32)	10241.17 (10794.69)	20.98
Prune	300.07 (0.12)	10597.31 (671,55)	29.79	249.37 (87.7)	14464.45 (12569.32)	1.05	158.63 (141.48)	9827.52 (11433.13)	24.17
L2Sep(R1)	300.02 (0.03)	10548.89 (4474.08)	30.11	242.83 (99.02)	10383.49 (11808.13)	28.97	162.18 (138.25)	11318.55 (11796.53)	12.67
L2Sep(R2)	300.03 (0.10)	10860.13 (4348.96)	28.05	242.90 (98.90)	13989.09 (12116.88)	4.31	166.23 (134.71)	11489.15 (11849.13)	11.35
LLM4Sepasel.	300.04 (0.06)	4769.47 (709.05)	68.40	276.34 (47.32)	14109.36 (13706.18)	3.48	256.48 (100.88)	22618.21 (10234.21)	-74.52
DynSep (Ours)	300.04 (0.08)	3720.26 (499.37)	75.35	235.19 (112.26)	8511.58 (12413.9)	41.78	132.50 (130.32)	9212.24 (9840.56)	28.92

Experiments: Ablation Study

Table 2: Ablation study comparing five variants of DynSep on three datasets.

	Easy: Multiple	Knapsack (n	=720, m = 72)	Medium:	Corlat $(n = 4)$	66, $m = 486$)	Hard: MIPLIB	mixed neos ($n = 6958$,	m = 5660)
Method	Time(s) ↓	Improv. ↑ (time, %)	PD integral ↓	Time(s) ↓	Improv. ↑ (time, %)	PD integral ↓	Time(s) ↓	PD integral ↓	Improv. ↑ (PD Int., %)
NoCuts	13.84 (28.79)	NA	25.21 (26.6)	74.66 (122.23)	NA	2687.68 (6209.48)	275.04 (43.23)	14618.53 (12214.63)	NA
Default	2.01 (1.82)	85.48	18.6 (10.49)	111.55 (132.19)	-49.41	10573.14	282.98 (29.49)	18500.5 (9386.15)	-26.56
w/o MaxR	0.67 (0.46)	95.16	10.07 (5.35)	28.28 (53.99)	62.12	2688.01 (5424.21)	263.63 (63.0)	9029.4 (12114.3)	38.23
w/o TF	0.64 (0.53)	95.38	9.82 (5.24)	25.82 (61.58)	65.42	2552.91 (6146.98)	245.04 (95.2)	9448.22 (11932.01)	35.37
w/o DynG	0.70 (1.23)	94.94	10.03 (5.86)	28.05 (50.97)	62.43	2635.47 (5086.84)	270.66 (50.83)	9233.22 (12003.39)	36.84
w/o DynG&TF	0.58 (0.41)	95.81	9.65 (5.28)	110.31 (131.6)	-47.75	10396.1 (12887.24)	300.0 (0.0)	17330.56 (9660.1)	-18.55
w/o BlockPE	0.93 (1.81)	93.28	11.12 (9.16)	34.4 (65.33)	53.92	2870.01 (5533.02)	242.39 (99.79)	8291.49 (12533.67)	43.28
DynSep (Ours)	0.52 (0.24)	96.24	9.71 (5.39)	22.96 (38.93)	69.25	2233.42 (3868.43)	235.19 (112.26)	8511.58 (12413.9)	41.78

Experiments: Generalization


Table 3: Evaluate the generalization ability of DynSep on MIS.

	Set Covering	g(n = 1000,	$m = 1000, 2 \times)$	Set Coverin	g(n = 1000,	$m = 2000, 4 \times)$
Method	Time(s) ↓	Improv. ↑ (time, %)	PD integral ↓	Time(s) ↓	Improv. ↑ (time, %)	PD integral ↓
NoCuts	78.91 (76.53)	NA	579.09 (507.14)	282.27 (52.86)	NA	3109.87 (1013.74)
Default	11.54 (3.55)	85.38	255.69 (92.95)	19.74 (8.06)	93.01	606.90 (310.79)
Search(30)	116.95 (92.25)	-48.821	912.87 (647.22)	292.54 (35.54)	-3.64	3827.701 (1057.08
Prune	107.86 (90.55)	-36.69	826.38 (660.27)	295.01 (29.73)	-4.51	4805.02 (1302.02)
L2Sep(R1)	105.48 (92.68)	-33.67	803.32 (656.89)	294.85 (31.41)	-4.46	4728.1 (1325.35)
L2Sep(R2)	116.43 (95.6)	-47.55	905.98 (694.71)	293.77 (33.96)	-4.07	4481.42 (1377.69)
LLM4Sepasel	149.28 (105.45)	-89.18	1115.22 (767.04)	295.4 (29.34)	-4.65	3881.22 (1001.51)
DynSep (Ours)	4.03 (0.64)	94.89	104.62 (20.19)	19.05 (26.92)	93.25	629.28 (1106.36)
	Max Independen	t Set (n = 10	00, m = 3946, 4×)	Max Independen	nt Set (n = 1:	$500, m = 5940, 9 \times)$
					Water Street,	
Method	$Time(s)\downarrow$	Improv. † (time, %)	PD integral ↓	Time(s) ↓	Improv. † (time, %)	PD integral ↓
Method NoCuts	Time(s) ↓ 195.53 (95.78)		PD integral ↓ 1056.83 (544.51)	Time(s) ↓ 300.01 (0.01)		PD integral ↓ 2226.72 (370.66)
2000000000		(time, %)		Telephonenia in the second	(time, %)	
NoCuts	195.53 (95.78)	(time, %) NA	1056.83 (544.51)	300.01 (0.01)	(time, %) NA	2226.72 (370.66)
NoCuts Default	195.53 (95.78) 88.17 (66.05)	(time, %) NA 54.91	1056.83 (544.51) 813.36 (512.14)	300.01 (0.01) 177.19 (91.28)	(time, %) NA 40.94	2226.72 (370.66) 1782.96 (887.23)
NoCuts Default Search(30)	195.53 (95.78) 88.17 (66.05) 151.51 (98.42)	(time, %) NA 54.91 22.51	1056.83 (544.51) 813.36 (512.14) 462.18 (339.23)	300.01 (0.01) 177.19 (91.28) 299.08 (9.17)	(time, %) NA 40.94 0.31	2226.72 (370.66) 1782.96 (887.23) 1251.49 (332.08)
NoCuts Default Search(30) Prune	195.53 (95.78) 88.17 (66.05) 151.51 (98.42) 105.83 (86.46)	(time, %) NA 54.91 22.51 45.88	1056.83 (544.51) 813.36 (512.14) 462.18 (339.23) 396.8 (318.97)	300.01 (0.01) 177.19 (91.28) 299.08 (9.17) 292.94 (26.42)	(time, %) NA 40.94 0.31 2.36	2226.72 (370.66) 1782.96 (887.23) 1251.49 (332.08) 1312.04 (343.31)
NoCuts Default Search(30) Prune L2Sep(R1)	195.53 (95.78) 88.17 (66.05) 151.51 (98.42) 105.83 (86.46) 144.67 (94.46)	(time, %) NA 54.91 22.51 45.88 26.01	1056.83 (544.51) 813.36 (512.14) 462.18 (339.23) 396.8 (318.97) 546.58 (370.45)	300.01 (0.01) 177.19 (91.28) 299.08 (9.17) 292.94 (26.42) 299.34 (6.19)	(time, %) NA 40.94 0.31 2.36 0.22	2226.72 (370.66) 1782.96 (887.23) 1251.49 (332.08) 1312.04 (343.31) 1504.9 (354.98)

Experiments: Visualization

Knapsack family: Round-wise Activation Status of **22** SCIP Separators

Gomory: activate later (effective in later rounds)

MIR: effective for knapsack-structured instances

