

# Debate or Vote: Which Yields Better Decisions in Multi-Agent LLMs?

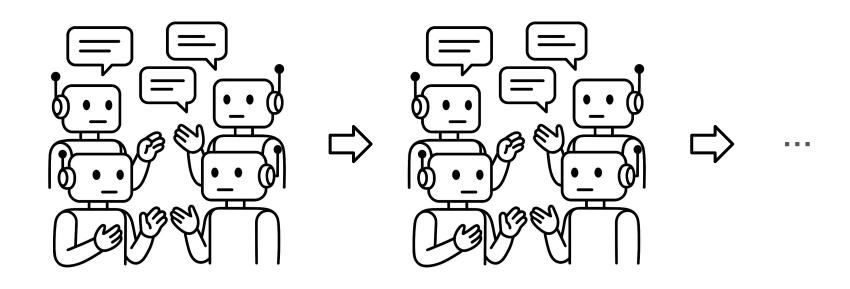
Hyeong Kyu Choi, Xiaojin Zhu, Sharon Li





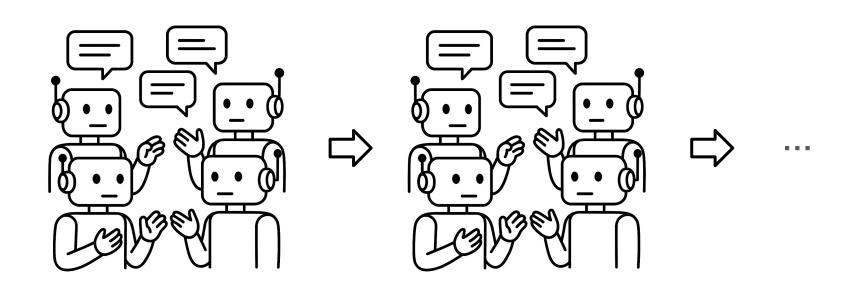
## LLM Multi-Agent Debate?





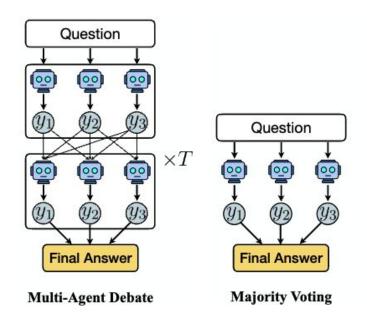
## LLM Multi-Agent Debate?





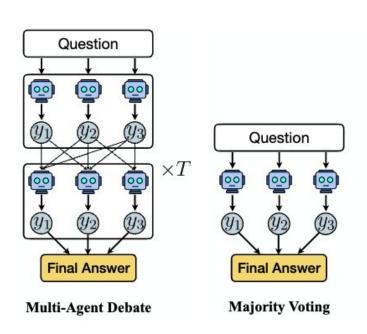
Is MAD meaningfully improving performance through interaction?

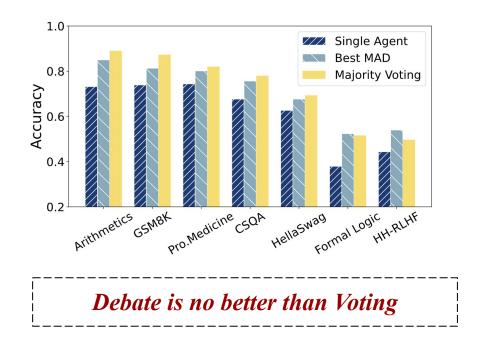
## Multi-Agent Debate vs. Majority Voting





## Multi-Agent Debate vs. Majority Voting









**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

```
(Belief sampling) \theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),
(Response generation) y_{i,t} \sim \text{Categorical}(\theta_{i,t}).
```

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\alpha_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in A$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\theta_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\boldsymbol{\theta}_{i,t} \sim \mathrm{Dirichlet}(\boldsymbol{\alpha}_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \mathrm{Categorical}(\boldsymbol{\theta}_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .





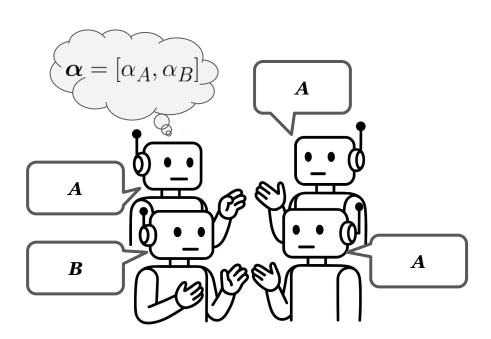
**Definition 1.** (Agent Response Generation via DCM) At round t, each agent i is associated with a belief vector  $\boldsymbol{\alpha}_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$ , where each entry  $\alpha_{i,t}^{(k)}$  reflects the agent's belief in response option  $k \in \mathcal{A}$ . To generate a response  $y_{i,t}$ , the agent follows a two-step process:

(Belief sampling) 
$$\theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}),$$
  
(Response generation)  $y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$ 

The marginal probability of generating any particular response  $y_{i,t} \in \mathcal{A}$ —after integrating out the randomness in  $\boldsymbol{\theta}_{i,t}$ —is given by  $P(y_{i,t} = k \mid \boldsymbol{\alpha}_{i,t}) = \alpha_{i,t}^{(k)} / \sum_{j \in \mathcal{A}} \alpha_{i,t}^{(j)}$ .

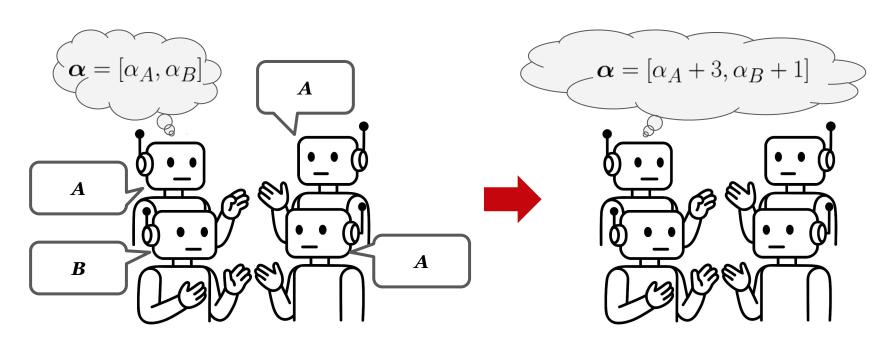
















**Theorem 2.** (Martingale Behavior of Multi-Agent Debate) For any agent i at round t > 0, if

$$\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} p_{j,t-1} = p_{i,t-1},$$

then sequence  $\{p_{i,t}\}_{t\geq 0}$  forms a martingale. That is, the expected belief at the next round equals the current belief:

$$\mathbb{E}[p_{i,t} \mid \boldsymbol{\alpha}_{t-1}] = p_{i,t-1}.$$

## MAD is a Martingale

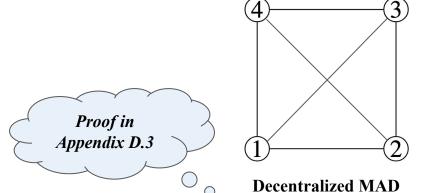


**Theorem 2.** (Martingale Behavior of Multi-Agent Debate) For any agent i at round t > 0, if

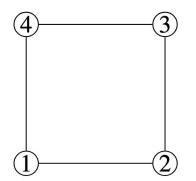
$$\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} p_{j,t-1} = p_{i,t-1},$$

then sequence  $\{p_{i,t}\}_{t\geq 0}$  forms a martingale. That is, the expected belief at the next round equals the current belief:

$$\mathbb{E}[p_{i,t} \mid \boldsymbol{\alpha}_{t-1}] = p_{i,t-1}.$$



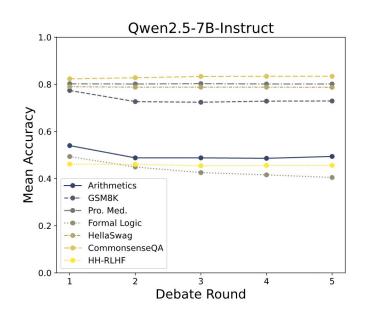
(Martingale Guaranteed)



**Sparse MAD** (li et al.) (Martingale Not Guaranteed)

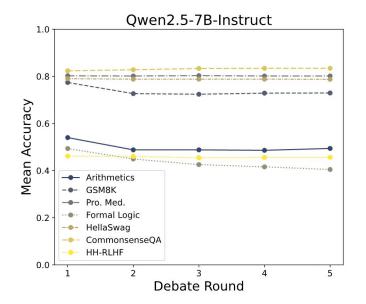






**★** Direct evaluation of agent-wise accuracy

## **Empirical Justifications**



**★** Direct evaluation of agent-wise accuracy



| Methods                     | Qwen2.5-32B-Instruct |                  |  |  |
|-----------------------------|----------------------|------------------|--|--|
| Methods                     | GSM8K Hel            |                  |  |  |
| Single-Agent                |                      |                  |  |  |
| Single-agent baseline       | $0.7566 \pm .02$     | $0.8700 \pm .01$ |  |  |
| Multi-Agent                 |                      |                  |  |  |
| Decentralized MAD $(T = 2)$ | 0.9367               | 0.8767           |  |  |
| Decentralized MAD $(T = 3)$ | 0.9200               | 0.8733           |  |  |
| Decentralized MAD $(T = 5)$ | 0.9300               | 0.8667           |  |  |
| Sparse MAD $(T=2)$          | 0.9400               | 0.8700           |  |  |
| Sparse MAD $(T=3)$          | 0.9433               | 0.8667           |  |  |
| Sparse MAD $(T=5)$          | 0.9400               | 0.8700           |  |  |
| Centralized MAD $(T=2)$     | 0.8000               | 0.8633           |  |  |
| Centralized MAD $(T=3)$     | 0.8333               | 0.8467           |  |  |
| Centralized MAD $(T=5)$     | 0.8333               | 0.8233           |  |  |
| Majority Voting             | 0.9433               | 0.8767           |  |  |

#### **★** Larger models

| Methods                     | Qwen2.5-7B-Instruct |                 |
|-----------------------------|---------------------|-----------------|
| Methods                     | GSM8K               | MMLU (Pro.Med.) |
| Sin                         | gle-Agent           |                 |
| Single-agent baseline       | $0.6813 \pm .04$    | $0.8257\pm.01$  |
| Mu                          | lti-Agent           |                 |
| Decentralized MAD $(T = 2)$ | 0.7867              | 0.8493          |
| Decentralized MAD $(T = 3)$ | 0.7467              | 0.8493          |
| Decentralized MAD $(T = 5)$ | 0.6567              | 0.8529          |
| Sparse MAD $(T=2)$          | 0.8667              | 0.8272          |
| Sparse MAD $(T=3)$          | 0.8300              | 0.8346          |
| Sparse MAD $(T=5)$          | 0.7533              | 0.8309          |
| Centralized MAD $(T=2)$     | 0.6567              | 0.8088          |
| Centralized MAD $(T = 3)$   | 0.6367              | 0.8051          |
| Centralized MAD $(T = 5)$   | 0.5700              | 0.8125          |
| Majority Voting             | 0.9300              | 0.8309          |







www.froilanchoi.com