

Towards Unsupervised Open-Set Graph Domain Adaptation via Dual Reprogramming

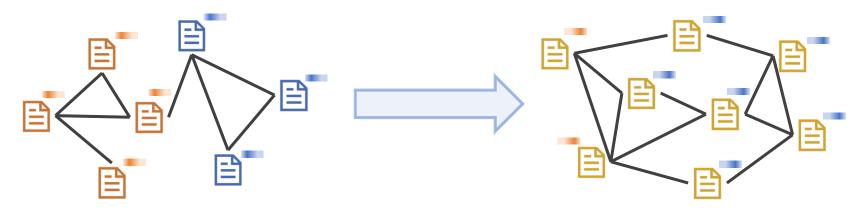
Zhen Zhang^{1,2}, Bingsheng He²

¹Nanjing University

²National University of Singapore

Background

- Unsupervised Graph Domain Adaptation has become a promising paradigm for transferring knowledge from a fully labeled source graph to an unlabeled target graph
- Existing graph domain adaptation models primarily focus on the closedset setting, where the source and target domains share the same label spaces



ACM Citation Network

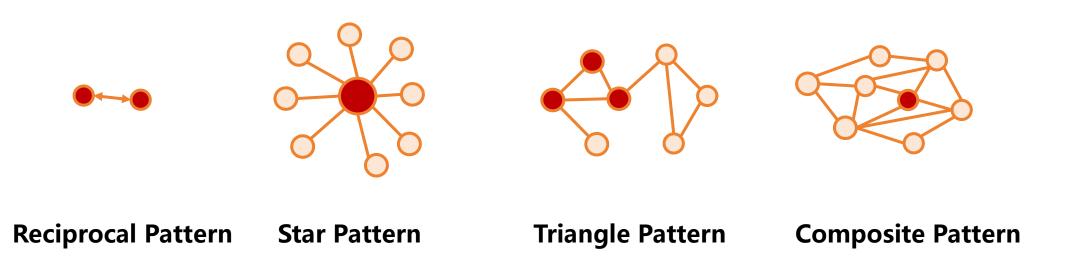
Source Graph: 2 Classes

DBLP Citation Network

Target Graph: 2 Classes

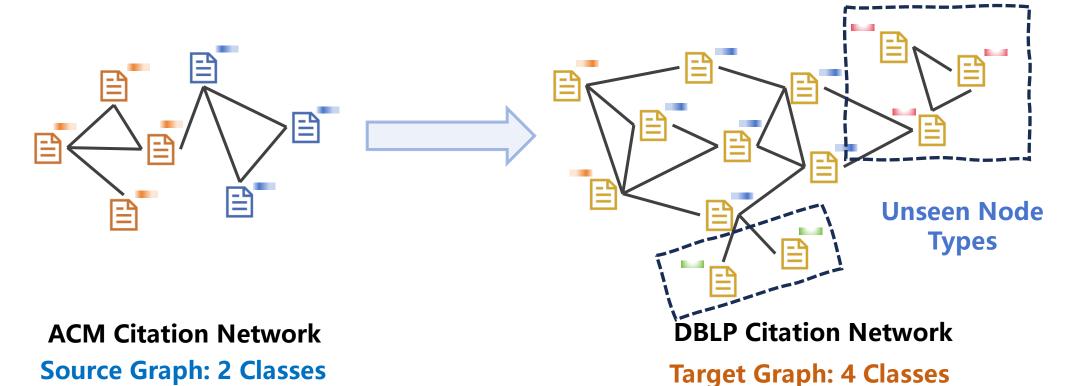
Background

- ➤ However, such a strict assumption is unrealistic in real-world applications, since the target domain might introduce new classes that are absent from the source domain, leading to significant challenges in identifying unseen samples
- > Examples: fraud schemes are *continually evolving* with fraudsters frequently developing new tactics



Background

In this paper, we investigate the problem of unsupervised *open-set* graph domain adaptation, where the goal is to not only correctly classify target nodes into the known classes, but also recognize previously unseen node types into the unknown class

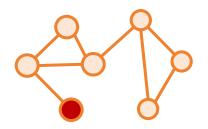


4

Related Work

➤ Recent models utilize a *threshold* to designate low-confidence samples as unknown, while aligning the source domain with the known portion of the target domain via adversarial training

➤ While promising, these methods depend heavily on manually set threshold and one threshold cannot fit all, which makes them difficult to adapt to different distributions



Threshold: 0.25 X Threshold: 0.40 2

Method

- ➤ To effectively distinguish between known and unknown groups and facilitate open-set recognition, it is essential to promote a clearer separation between these two groups
- ➤ We propose to perform dual reprogramming from the graph and the model perspectives
 - Model Reprogramming: pruning domain-specific parameters to reduce bias towards the source graph while preserving parameters that capture transferable patterns across graphs

Graph Reprogramming: modifying target graph structure and node features, which facilitates better separation of known and unknown classes

Model Reprogramming

Motivated by the lottery ticket hypothesis, which demonstrates that only a subset of parameters is crucial for generalization, we propose to reprogram the graph neural network $f_w(\cdot)$ by selectively masking its weights

$$Z^{l} = f_{w}(G, \widetilde{W}^{l}) = \sigma(\widetilde{D}^{\frac{1}{2}}\widetilde{A}\widetilde{D}^{\frac{1}{2}}Z^{l-1}(W^{l} \odot M^{l}))$$

- \triangleright We calculate its gradient ∇M^l with respect to the loss function to quantify the importance of each weight element
- We set the lowest ρ percent of gradient values in M^l to zero, leaving the remaining elements at 1. These sparse masks are then applied to prune W^l , resulting in the reprogrammed sparse model

Graph Reprogramming

➤ We modify the target *graph's structure* and *node features* to better align with the source domain, while differentiating the known and unknown groups within the target domain

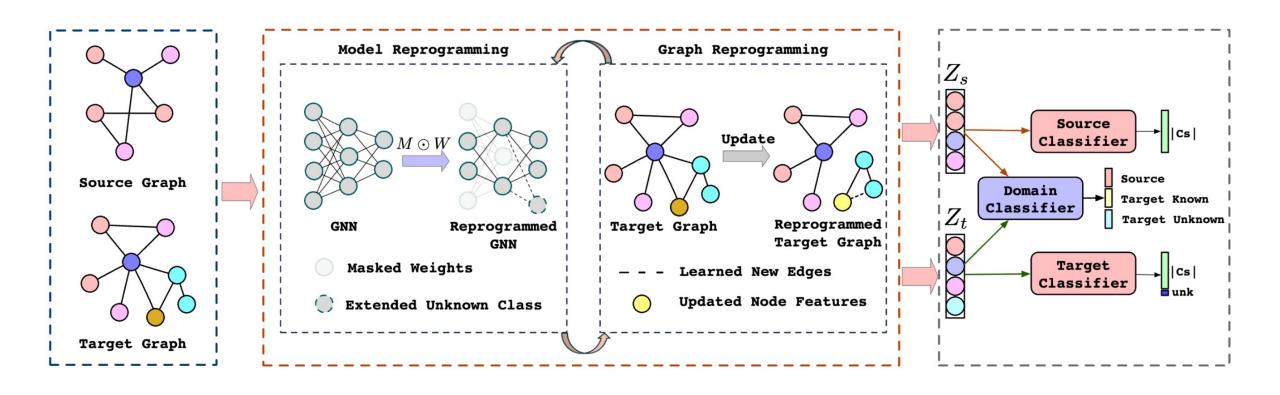
$$\widehat{A}_t = \psi_x(X_t) = X_t + \nabla X_t$$

$$\widehat{A}_t = \psi_a(A_t) = A_t \oplus \nabla A_t$$

- $\blacktriangleright \psi_x(\cdot)$ represents the transformation function applied to update node features, and $\psi_a(\cdot)$ denotes the function for modifying the graph structure by adding or removing edges
- > We choose two simple, direct transformation strategies described above

Method

> We present an overview of the proposed GraphRTA framework



Training

We model the entropy of instances as being generated by a mixture of two Beta distributions to capture the overall characteristics of the target graph

$$p(e_i) = \mu_{tk} \cdot p(e_i|tk) + \mu_{tu} \cdot p(e_i|tu)$$

- ➤ After estimating the probability of each target instance belonging to either the target-known or target-unknown group, we can classify all the instances into three distinct domains for the domain adversarial learning framework
- ightharpoonup The domain discriminator $d_{\theta}(\cdot)$ is optimized by minimizing the crossentropy loss to effectively classify three domains
 - > Source, Target-known, and Target-unknown

Experiments

- Datasets: we conduct experiments using three categories of publicly available datasets
- > Three key category baselines:
 - > Graph Neural Networks
 - GCN, SAGE, GAT
 - Closed-set GDA
 - **▶** UDAGCN, A2GNN, etc.

Open-set GDA

DANCE, SDA, UAGA, etc.

Datasets	#Nodes	#Edges	#Feat	#Class
DBLPv7 Citationv1 ACMv9	5,484 8,117 8,935 15,098 9,360 15,556		6,775	5
ogbn-arxiv	169,343	1,166,243	128	40
Cornell Texas Wisconsin	183 183 251	298 325 515	1,703	5

Experiments

Our proposed GraphRTA consistently demonstrates superior performance across a variety of scenarios

$$H-score: HS = \frac{2 \times Acc_{tk} \times Acc_{tu}}{Acc_{tk} + Acc_{tu}}$$

Models	ACMv9→	Citationv1	ACMv9-	DBLPv7	Citationv1	→ACMv9	Citationv1	→DBLPv7	DBLPv7-	→ACMv9	DBLPv7—	Citationv1
	Acc	HS										
GCN	40.64 ± 0.98	41.02±2.11	45.84±1.06	50.20±1.26	47.10±0.49	49.05±0.74	51.48±0.42	56.13±0.22	43.90±1.50	44.47±2.80	39.26±0.70	37.96±1.34
SAGE	38.24 ± 0.80	36.89 ± 2.10	41.77 ± 1.05	45.20 ± 1.41	43.90 ± 1.56	45.63 ± 2.18	47.14 ± 0.82	51.65 ± 0.83	41.66 ± 0.47	42.04 ± 1.32	39.62 ± 0.22	40.32 ± 0.40
GAT	32.01±0.73	21.51±2.36	34.84±1.25	32.90±2.66	36.38 ± 0.66	30.67 ± 1.66	34.56 ± 0.64	32.22±1.53	35.85±1.91	25.66±5.30	32.87 ± 1.41	20.91 ± 3.92
UDAGCN	44.78 ± 4.12	$20.94{\pm}6.21$	55.07 ± 1.03	50.05 ± 7.90	53.38 ± 1.53	53.56 ± 6.00	62.36±4.19	$43.21{\pm}4.08$	47.28 ± 1.49	39.21±1.16	$52.38{\pm}1.18$	46.92 ± 6.26
GRADE	57.23 ± 1.06	59.49 ± 1.16	56.12 ± 0.65	58.14 ± 1.07	57.86 ± 0.29	60.41 ± 0.26	61.94 ± 0.38	64.21 ± 0.48	54.93 ± 0.40	57.73 ± 0.41	54.60 ± 0.64	57.36 ± 0.55
SpecReg	51.31 ± 5.60	36.70 ± 1.49	58.17 ± 2.06	60.15 ± 0.41	56.58 ± 1.22	56.36 ± 0.86	63.68 ± 5.82	59.62 ± 0.59	53.30 ± 4.05	53.12 ± 6.84	55.72 ± 2.43	49.43 ± 7.41
StruRW			46.91 ± 1.95									
A2GNN	42.53 ± 2.07	41.66±3.69	60.43 ± 0.52	62.74 ± 0.82	57.21±1.03	57.12±0.63	63.45 ± 0.31	65.37 ± 0.59	57.64 ± 1.82	60.68±2.27	41.09±1.20	43.52 ± 1.24
DANCE			58.01±0.47									
OpenWGL	49.98 ± 0.62	5.57 ± 1.56	52.43 ± 0.62	7.86 ± 0.69	48.37 ± 0.50	4.07 ± 0.99	55.68 ± 0.35	3.49 ± 0.76	48.04 ± 1.08	25.13 ± 4.89	49.52 ± 0.68	22.05 ± 2.29
PGL	54.42 ± 1.04	57.86 ± 1.12	48.43 ± 1.12	53.15 ± 1.23	51.87 ± 0.69	54.71 ± 0.72	53.83 ± 0.66	59.01 ± 0.75	49.27 ± 0.80	51.74 ± 0.83	52.82 ± 0.87	56.16 ± 0.93
OpenWRF	53.53 ± 2.59	31.05 ± 4.57	48.16 ± 1.63	35.45 ± 3.62	47.01 ± 3.32	33.08 ± 6.46	52.81 ± 1.43	31.96 ± 1.24	47.27 ± 1.54	19.38 ± 4.03	57.31 ± 1.14	34.06 ± 9.77
G2Pxy	59.75 ± 0.49	54.47 ± 1.33	56.26 ± 0.73	49.63 ± 2.41	58.49 ± 1.03	58.56 ± 1.36	61.42 ± 0.47	59.13 ± 0.54	54.48 ± 0.58	54.82 ± 0.78	56.36 ± 0.69	54.02 ± 1.75
SDA	58.23 ± 4.67	59.97 ± 6.74	59.06 ± 4.75	56.34 ± 1.23	57.33 ± 6.22	58.85 ± 8.58	63.55 ± 0.91	65.53 ± 2.00	57.66 ± 0.61	60.54 ± 1.20	57.27 ± 2.72	59.73 ± 3.87
UAGA	53.37 ± 6.72	61.34 ± 1.16	52.11±2.96	67.50±2.95	52.25 ± 4.81	60.59 ± 5.95	52.73 ± 5.13	64.81 ± 4.50	48.14 ± 1.47	55.73 ± 3.98	47.97±9.24	52.16 ± 2.18
GraphRTA	66.26±0.93	66.33±1.69	62.33±0.68	64.42±1.10	60.93±2.63	62.89±2.46	63.87±1.97	65.99±1.87	56.91±2.50	59.41±2.22	60.11±1.98	62.33±1.53

Experiments

- > H-score provides a more comprehensive evaluation metric than accuracy
- > Several baselines *achieve high accuracy scores but suffer from low H-scores*, reflecting their difficulty in accurately identifying open-set instances

Models	Arxiv I→Arxiv II		Arxiv I→Arxiv III		Arxiv II→Arxiv III		Cornell→Wisconsin		Texas→Cornell		Texas→Wisconsin	
	Acc	HS	Acc	HS	Acc	HS	Acc	HS	Acc	HS	Acc	HS
GCN	44.82 ± 0.20	41.08±0.74	41.57±0.22	41.05±0.66	45.65±0.37	41.04±0.89	21.19±0.17	0.20 ± 0.45	38.46±8.43	25.19±11.0	21.83±6.29	13.32 ± 9.15
SAGE	44.95 ± 0.15	37.83 ± 0.71	42.75 ± 0.15	38.63 ± 0.64	49.60 ± 0.12	38.11 ± 0.49	18.56 ± 2.86	10.30 ± 10.7	34.75 ± 3.31	11.66 ± 4.91	24.22 ± 10.7	14.48 ± 9.01
GAT	$\overline{44.81\pm0.13}$	34.31±1.39	42.05 ± 0.30	34.97 ± 0.76	46.49 ± 0.17	36.35 ± 0.78	20.96 ± 0.21	0.40 ± 0.54	27.97±3.00	15.89 ± 9.15	9.48 ± 2.31	8.08 ± 2.24
UDAGCN	31.90±2.27	33.68±3.48	27.71±0.86	28.37±1.63	35.09±1.29	39.53±1.56	19.28±6.57	5.94 ± 5.51	29.18±1.87	$7.35{\pm}5.28$	22.78±5.19	3.93±4.12
GRADE			39.28 ± 0.37									
SpecReg	37.80 ± 1.90	31.76 ± 1.64	28.14 ± 4.59	29.03 ± 3.87	46.60 ± 0.29	31.70 ± 4.27	20.79 ± 3.24	19.93 ± 3.12	31.69 ± 3.34	13.53 ± 9.15	19.20 ± 4.72	10.28 ± 6.14
StruRW	37.47 ± 1.93	40.67 ± 2.09	36.17 ± 0.27	40.54 ± 0.45	42.10 ± 0.44	43.62 ± 0.50	16.57 ± 2.26	16.22 ± 3.72	42.02 ± 7.51	40.98 ± 7.86	16.01 ± 2.47	11.46 ± 6.17
A2GNN	42.07 ± 0.14	45.00 ± 0.24	38.92 ± 0.16	43.14 ± 0.17	42.26 ± 0.53	45.18 ± 0.17	19.12 ± 2.56	17.40 ± 3.32	44.37 ± 0.71	31.59 ± 6.44	14.98 ± 0.77	6.22 ± 2.58
DANCE	OOM	OOM	OOM	OOM	OOM	OOM	21.52±23.4	3.11±0.49	20.77±0.00	0.00 ± 0.00	4.22±0.21	1.65±1.50
OpenWGL	22.58 ± 0.58	1.45 ± 0.40	32.99 ± 1.49	1.31 ± 0.37	35.46 ± 2.61	0.04 ± 0.08	16.57 ± 2.49	14.09 ± 2.30	33.22 ± 5.77	28.99 ± 5.65	10.51 ± 4.80	8.76 ± 3.56
PGL	41.50 ± 0.25	46.32 ± 0.28	38.38 ± 0.14	43.31 ± 0.16	40.28 ± 0.24	45.43 ± 0.27	18.24 ± 7.16	0.00 ± 0.00	21.20 ± 0.45	0.00 ± 0.00	28.45 ± 5.93	0.00 ± 0.00
OpenWRF	32.58 ± 0.58	1.45 ± 0.40	32.99 ± 1.49	1.31 ± 0.37	35.46 ± 2.61	0.04 ± 0.08	26.29 ± 7.11	6.84 ± 5.81	21.64 ± 3.81	4.58 ± 5.03	26.93 ± 11.4	5.99 ± 4.65
G2Pxy	31.13 ± 4.55	28.45 ± 1.13	24.79 ± 1.49	16.28 ± 3.25	34.93 ± 3.03	37.27 ± 6.75	-	-	-	-	-	-
SDA	39.77 ± 0.34	42.60 ± 0.15	36.37 ± 0.21	39.44 ± 0.21	41.53 ± 0.20	46.03 ± 0.18	-	-	-	-	-	-
UAGA	32.92 ± 0.16	23.69 ± 0.16	32.24 ± 0.13	22.98 ± 0.13	39.16±0.39	29.79±0.41	-		-	-	-	-
GraphRTA	47.70±1.39	50.79±2.79	45.52±2.00	46.25±0.40	52.37±1.49	48.42±1.94	33.46±4.43	34.36±1.76	52.18±0.38	35.64 ± 0.83	29.34±1.21	30.08±2.96

Conclusion

➤ We study *unsupervised open-set graph domain adaptation*, an underexplored area in the graph community, where the target graph introduces new classes that are not present in the source graph

➤ We propose a novel framework named GraphRTA that conducts *dual* reprogramming at the model as well as the graph levels

Experiments further show that our proposed GraphRTA consistently outperforms or matches the performance of recent state-of-the-art models

Thanks Q&A

Code and Data