

Reliably Detecting Model Failures in Deployment Without Labels

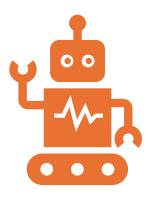
Viet Nguyen^{1,3,†}, Changjian Shui^{2,†}, Vijay Giri⁴, Siddharth Arya^{1,3}, Amol Verma^{1,5}, Fahad Razak^{1,5}, Rahul G. Krishnan^{1,3}

¹University of Toronto ²University of Ottawa ³Vector Institute ⁴University of Pennsylvania ⁵Unity Health Toronto

Motivation

- Current ML models assume that training and deployment data are independent and identically distributed (IID).
- In practice: this assumption fails due to **distribution shifts** during model deployment.
 - e.g. temporal shifts due to long-term trends, seasonality, source-target mismatch...
- We call this scenario **post-deployment deterioration (PDD)** and monitor its occurrence without relying on deployment labels.

This work



We propose Disagreement-Driven
Deterioration Monitoring (D3M), a
monitoring protocol leveraging model
disagreement.

D3M does not require labels for deployment queries.

Maximum disagreement rate

- Train f with ERM on ID **labeled** data D^n .
- For an **unlabeled** query D^m , the maximum disagreement rate ϕ for f is the highest achievable disagreement rate on D^m between f and models that agree with f on D^n .

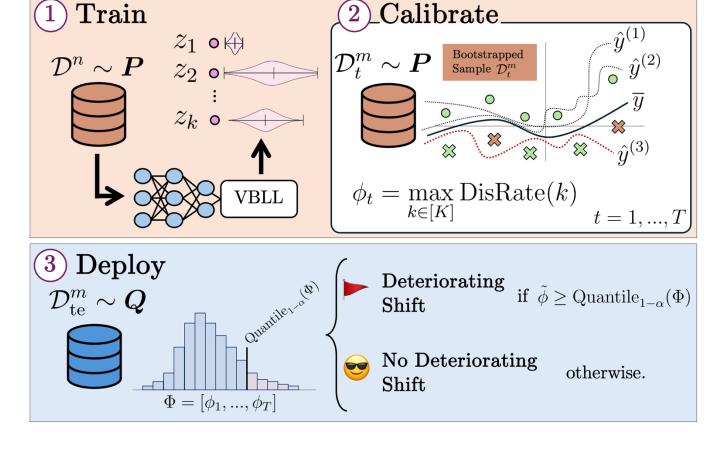
Competing hypotheses disagree better on OOD data where f underperforms than ID data.

Core mechanism

- 1. Collect ID maximum disagreement rates on bootstrapped validation sets into Φ.
- 2. For some query, compute its maximum disagreement rate ϕ .
- 3. If ϕ could not have come from Φ , PDD will occur!

Implementation

- f is the mean model of a (pretrained) feature extractor with a Variational Bayesian Last Layers (VBLL) output.
- Maximum disagreement rate computation:
 - Sample *K* hypotheses, compute their disagreement rates with respect to *f*.
 - Record the maximum value found!



Results:

UCI, CIFAR-10.1, Camelyon17

	UCI Heart Disease			CIFAR 10.1			Camelyon 17		
	10	20	50	10	20	50	10	20	50
BBSD	.13±.03	.22±.04	.46±.05	.07±.03	.05±.02	.12±.03	.16±.04	.38±.05	.87±.03
Rel. Mahalanobis	$.11 \pm .03$	$.36 {\pm} .05$	$.66 {\pm} .05$	$.05 {\pm} .02$	$.03 \pm .03$	$.04 \pm .02$	$.16 \pm .04$	$.40 \pm .05$	$.89 {\pm} .03$
Deep Ensemble	$.13 \pm .03$	$.32 \pm .05$	$.64 {\pm} .05$	$.33 \pm .05$	$.52 \pm .05$	$.68 {\pm} .05$	$.14 \pm .03$	$.26 \pm .04$	$.82 {\pm} .04$
CTST	$.15 {\pm} .04$	$.51 \pm .05$	$.98 {\pm} .01$	$.03 \pm .02$	$.04 {\pm} .02$	$.04 {\pm} .02$	$.11 \pm .03$	$.59 \pm .05$	$.59 {\pm} .05$
MMD-D	$.09 \pm .03$	$.12 \pm .03$	$.27 {\pm} .04$	$.24 \pm .04$	$.10 \pm .03$	$.05 {\pm} .02$	$.42 {\pm} .05$	$.62 {\pm} .05$	$.69 {\pm} .05$
H-Div	$.15 {\pm} .04$	$.26 \pm .04$	$.37 {\pm} .05$	$.02 \pm .01$	$.05 {\pm} .02$	$.04 {\pm} .02$	$.03 \pm .02$	$.07 \pm .03$	$.23 \pm .04$
Detectron	$.24\pm.04$.57 ± .05	$.82 \pm .04$	$.37 \pm .05$.54 ± .05	.83±.04	.97 ± .02	$1.0\pm.00$	$.96 {\pm} .02$
D3M (Ours)	.38±.19	.25±.28	.69±.33	.40±.10	.45±.10	.74±.12	.89±.20	.93±.05	.99±.02

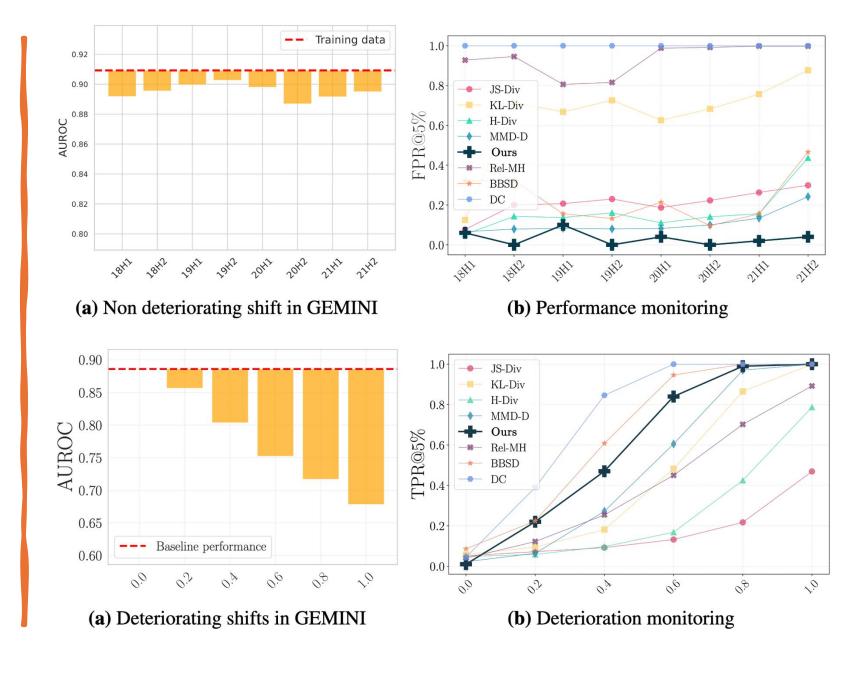
Table 2: True positive rates (TPR) comparison across datasets and query sizes. As models do experience deterioration, the higher TPR the better. **Bold** indicates best in column. We report the means and standard deviations of TPRs obtained from 10 independently seeded runs.

	UCI Hea	rt Disease	CIFA	R 10.1	Camelyon 17		
	100	200	100	200	100	200	
D3M (Ours)	.93±.10	.99±.01	.91±.11	.99±.01	1.0±.00	1.0±.00	

Table 7: True positive rates (TPR) for D3M across datasets and test sizes 100, 200.

Results:

GEMINI



Thank you for your attention!

Please visit us at our poster session!

Viet Nguyen[†]
University of Toronto

Changjian Shui[†]
University of Ottawa

Vijay Giri University of Pennsylvania

Siddharth Arya University of Toronto

Amol Verma
Unity Health Toronto

Fahad Razak Unity Health Toronto

Rahul G. Krishnan University of Toronto