Robustifying Learning-Augmented Caching Efficiently without Compromising 1-Consistency

Peng Chen (Presenter), Hailiang Zhao 1* , Jiaji Zhang 1 , Xueyan Tang 2 , Yixuan Wang 3 , Shuiguang Deng 1*

¹ Zhejiang University ² Nanyang Technological University ³ Nanjing University of Aeronautics and Astronautics

Our Work in A Nutshell

- Summarize how existing learning-augmented algorithms obtain robustness and their limitations.
- Propose an efficient robustification framework for 1-consistent learning-augmented algorithms that preserves their 1-consistency.

The Online Caching (Paging) Problem

- **Goal:** Serve requests with a cache of size k, minimizing the cost (i.e., the number of cache misses).
- **Offline Optimum:** Belady's rule evict the page used furthest in the future.
- Online Algorithm:
 - Challenge: Future requests are unknown.
 - Competitive Ratio: Compare cost to the offline optimum.

Learning-Augmented Caching

- Use Machine Learning (ML) predictions (e.g., next request time) to guide eviction.
- **Goal:** Perform well when predictions are good, but remain stable when they are bad.

Key Metrics:

```
Consistency (\gamma): Competitive ratio with perfect predictions. (Ideal: \gamma=1)
```

Robustness (δ) : Competitive ratio with arbitrary (worst-case) predictions. (Ideal: small constant, e.g., $\mathcal{O}(H_k)$)

Smoothness: How performance degrades as prediction error η increases.

Existing Learning-Augmented Algorithms

• Naive algorithms (BLINDORACLE) achieve 1-consistency but have no bounded robustness.

Existing robustification methods fall short:

- Embedding-based (PREDICTIVEMARKER, LMARKER)
 - Good robustness (e.g., $\mathcal{O}(\log k)$).
 - Sacrifices 1-consistency.
- Switching-based (F&R)
 - Achieves 1-consistency with good robustness $(\mathcal{O}(\log k))$.
 - Suffers from high computational overhead: $\mathcal{O}(n^2 \log k)$ total for n requests.

Our Research Question

Can we enhance robustness in a time-efficient manner without compromising 1-consistency?

Existing Learning-Augmented Algorithms

• Naive algorithms (BLINDORACLE) achieve 1-consistency but have no bounded robustness.

Existing robustification methods fall short:

- Embedding-based (PREDICTIVEMARKER, LMARKER)
 - Good robustness (e.g., $\mathcal{O}(\log k)$).
 - Sacrifices 1-consistency.
- Switching-based (F&R)
 - Achieves 1-consistency with good robustness $(\mathcal{O}(\log k))$.
 - Suffers from high computational overhead: $\mathcal{O}(n^2 \log k)$ total for n requests.

Our Research Question

Can we enhance robustness in a **time-efficient** manner **without compromising 1-consistency**?

Insights

- Observation 1: **Marker-based** methods protect pages on request, which can block correct evictions even with perfect predictions, thus breaking 1-consistency.
- Observation 2: Prediction error detection must **trade off** efficiency and sensitivity: recomputing the offline optimum is too slow, while comparing to LRU is too insensitive.
- Observation 3: Optimal algorithms (including Belady) **never keep** a page x in the cache that is not requested during the time interval between the eviction and the next request of another page y; otherwise, evicting y instead would be better.

Insights

- Observation 1: **Marker-based** methods protect pages on request, which can block correct evictions even with perfect predictions, thus breaking 1-consistency.
- Observation 2: Prediction error detection must **trade off** efficiency and sensitivity: recomputing the offline optimum is too slow, while comparing to LRU is too insensitive.
- Observation 3: Optimal algorithms (including Belady) **never keep** a page x in the cache that is not requested during the time interval between the eviction and the next request of another page y; otherwise, evicting y instead would be better.

Insights

- Observation 1: **Marker-based** methods protect pages on request, which can block correct evictions even with perfect predictions, thus breaking 1-consistency.
- Observation 2: Prediction error detection must **trade off** efficiency and sensitivity: recomputing the offline optimum is too slow, while comparing to LRU is too insensitive.
- Observation 3: Optimal algorithms (including Belady) **never keep** a page x in the cache that is not requested during the time interval between the eviction and the next request of another page y; otherwise, evicting y instead would be better.

- **1** Cache Miss: Request p_i misses.
- ② Check Phase Status: Is \mathcal{U} empty?
 - ✓ **Yes:** Start New Phase. $U \leftarrow$ all pages.
 - × No: Continue current phase.
- Check for Prediction Error: Has p_i been evicted in the current phase?
 - √ Yes (prediction error!):
 - Evict random page from $\mathcal{U}. \to (\mathsf{Robustness})$
 - Guard p_i .
 - × No:
 - ullet Evict page using Base Algorithm A. o (1-Consistency)

- **1** Cache Miss: Request p_i misses.
- Check Phase Status: Is U empty?
 - ✓ **Yes:** Start New Phase. $U \leftarrow$ all pages.
 - × No: Continue current phase.
- Oheck for Prediction Error: Has p_i been evicted in the current phase?
 - √ Yes (prediction error!):
 - Evict random page from $\mathcal{U}. \to (\mathsf{Robustness})$
 - Guard p_i .
 - × No:
 - ullet Evict page using Base Algorithm A. o (1-Consistency)

- **① Cache Miss:** Request p_i misses.
- **2** Check Phase Status: Is \mathcal{U} empty?
 - ✓ **Yes:** Start New Phase. $U \leftarrow$ all pages.
 - × No: Continue current phase.
- **Oheck for Prediction Error:** Has p_i been evicted in the current phase?
 - √ Yes (prediction error!):
 - Evict random page from \mathcal{U} . \rightarrow (Robustness)
 - Guard p_i .
 - × No:
 - Evict page using Base Algorithm A. → (1-Consistency)

- **① Cache Miss:** Request p_i misses.
- **2** Check Phase Status: Is \mathcal{U} empty?
 - ✓ **Yes:** Start New Phase. $U \leftarrow$ all pages.
 - × No: Continue current phase.
- **Oheck for Prediction Error:** Has p_i been evicted in the current phase?
 - √ Yes (prediction error!):
 - Evict random page from $\mathcal{U}. \to (Robustness)$
 - Guard p_i .
 - × No:
 - Evict page using Base Algorithm A. \rightarrow (1-Consistency)

Our Contribution

A lightweight robustification framework, GUARD , that:

- Applies to any 1-consistent learning-augmented algorithm. (not limited to the RB-following algorithms defined in the paper)
- Achieves a **state-of-the-art** consistency-robustness trade-off:

$$(1, 2H_{k-1} + 2)$$

• Adds amortized $\mathcal{O}(1)$ computation per request.

Thank You

Code available at: https://github.com/OptiSys-ZJU/cache-coliseum

Contact me: naturechenpeng@gmail.com