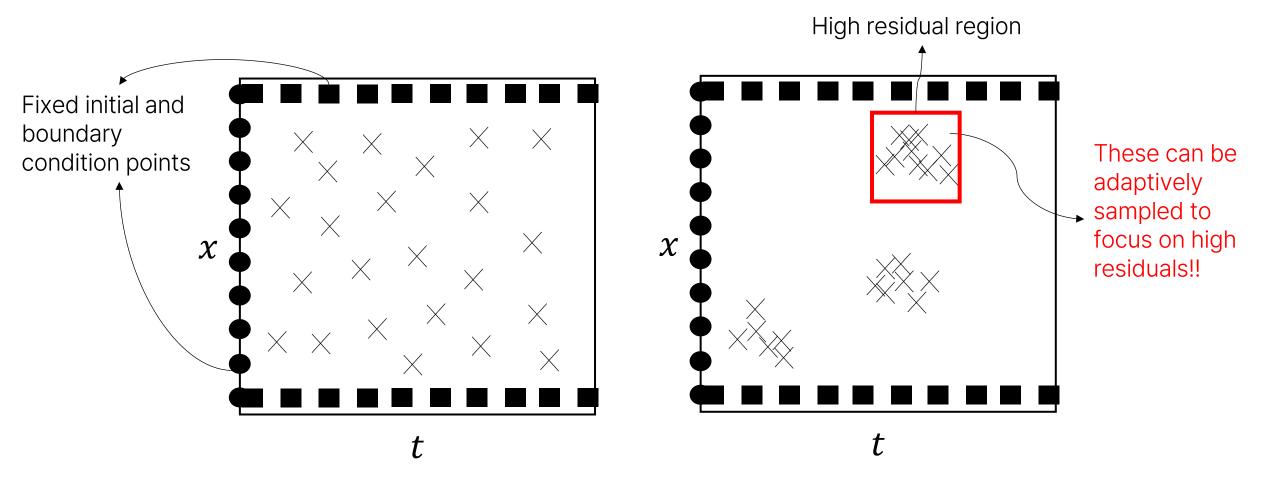


Mitigating Instability in High Residual Adaptive Sampling for PINNs via Langevin Dynamics

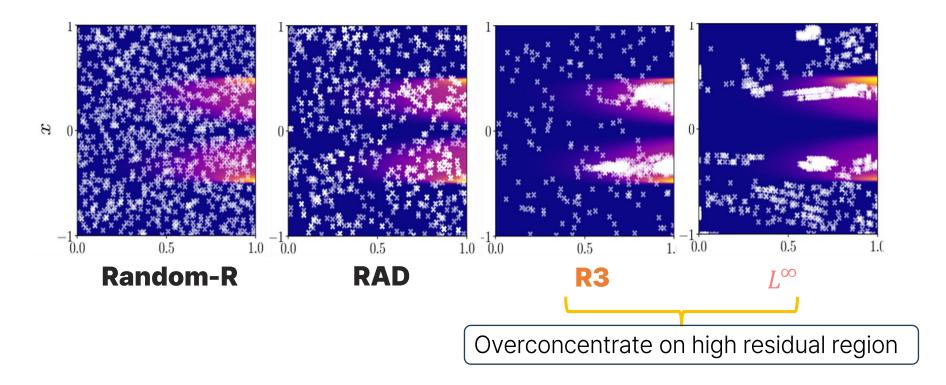
Minseok Jeong*, Giup Seo*, and Euiseok Hwang

School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology (GIST), South Korea



Motivation & Background

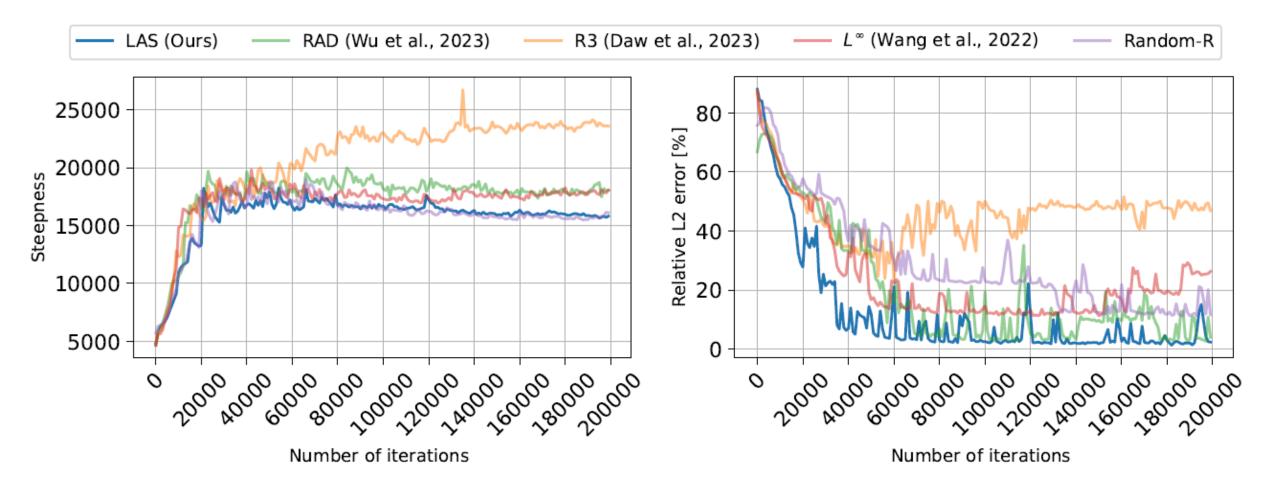
Focusing on more informative samples to enhance the performance


- PINN problem with residual $\mathcal{R}(\mathbf{x}) \triangleq \partial_t f(x,t) \mathcal{N}[f](x,t)$ where $\mathbf{x} = (x,t)$
- High-residual points are more informative → Adaptively sample and emphasize high-residual regions

Motivation & Background

Adaptive PINN sampling often over-focus on high-residual regions

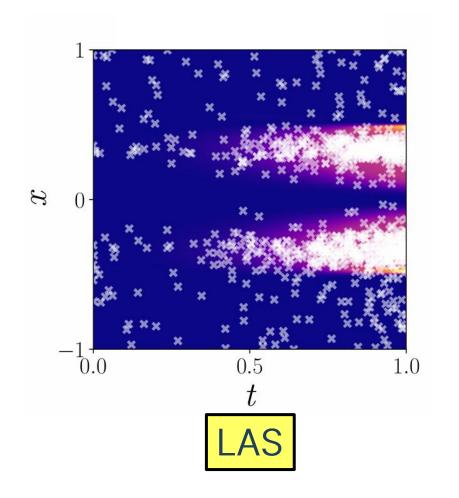
• Over-focusing algorithms(R3, L^{∞}) have shown superior performances on STIFF PDEs

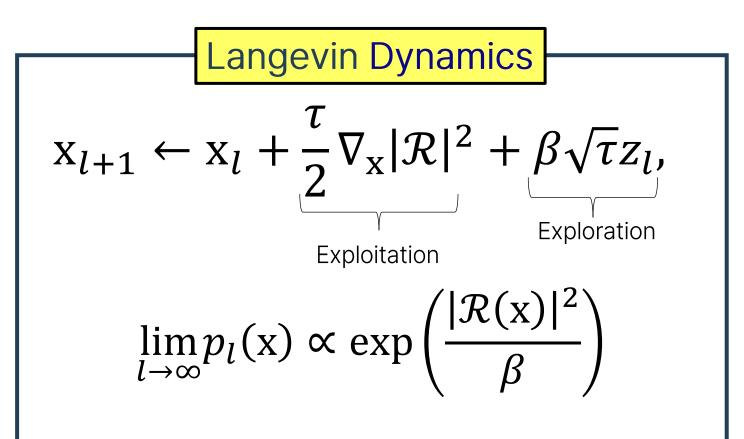


- Q. Do we really need to sample only high-residual points?
- A. No! theory explains the failure mode.

Analysis

Over-focusing on high residuals can destabilize training.

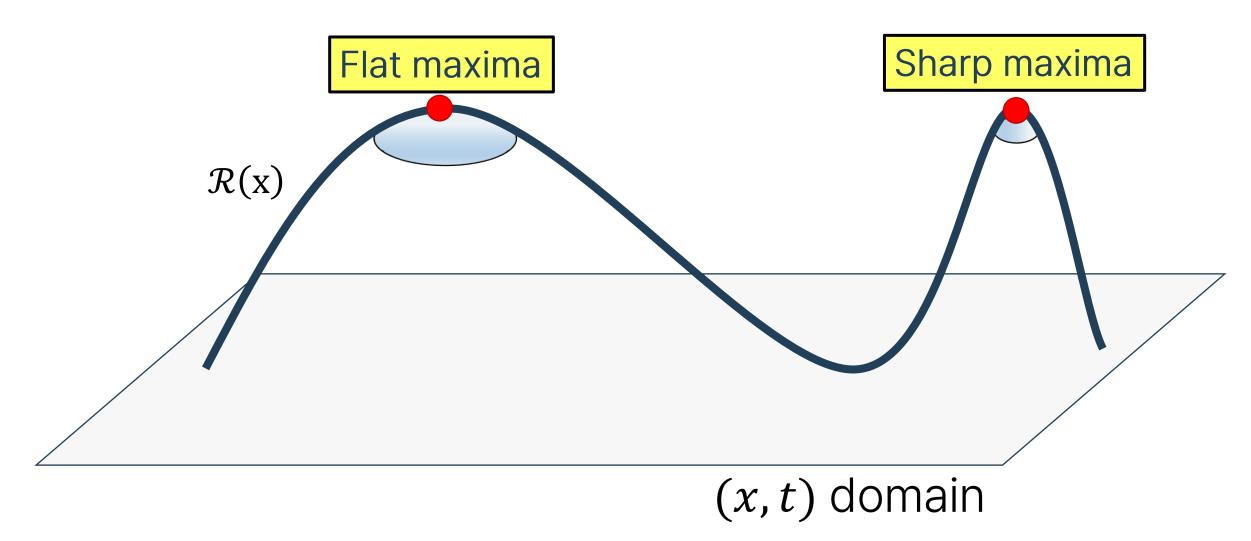

- This sharpens the loss landscape (steep curvature) [Propositions 3.1 and 3.2]
- Then the model needs very small learning rates → training collapses [Theorem 3.1]



Method

LAS: Langevin-based Adaptive Sampling

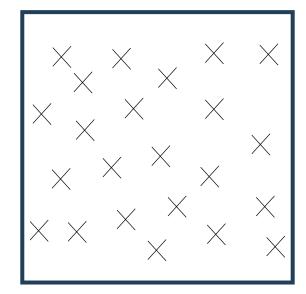
- We move collocation points using a Langevin update:
 - Sample high-residual regions in a balanced manner

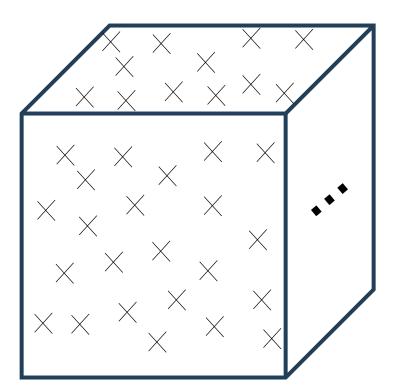


Method

Enhanced stability due to the properties of Langevin dynamics:

LAS naturally favors flat maxima [Theorem 4.2] → prevent sharp peaks

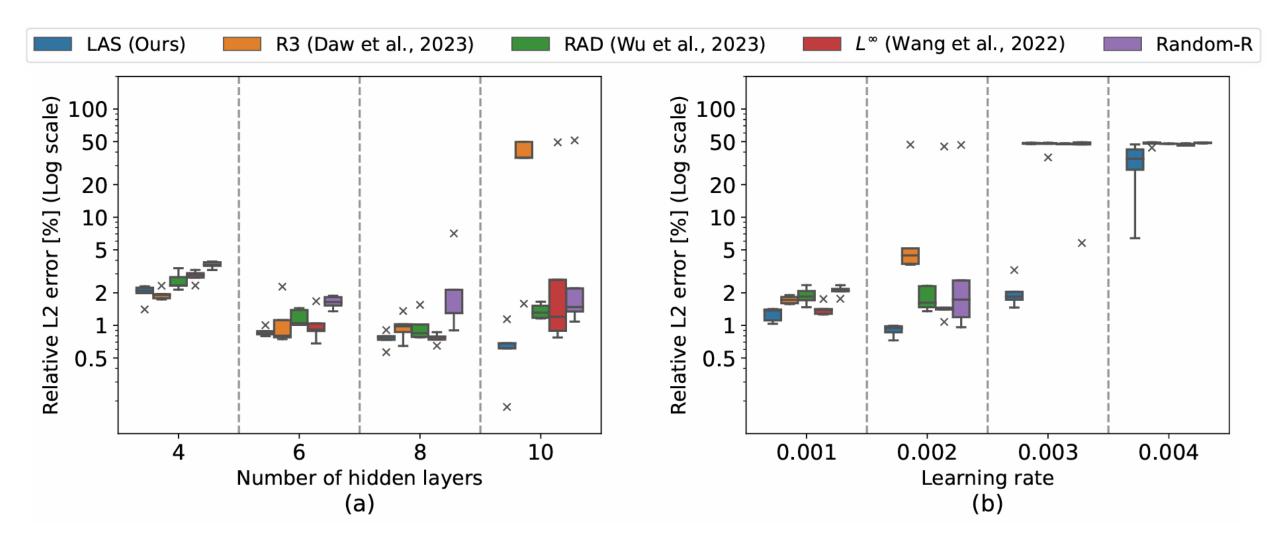

Method


Enhanced stability due to the properties of Langevin dynamics:

- Does not rely solely on Monte-Carlo estimation for sampling
 - Monte-Carlo breaks down in high-dimensional PDEs (curse of dimensionality)

Monte-Carlo estimation

$$\mathbb{E}|\mathcal{R}^{2}(\mathbf{x})| \approx \frac{1}{n} \sum_{i=1}^{n} |\mathcal{R}(\mathbf{x}_{i})|^{2}$$



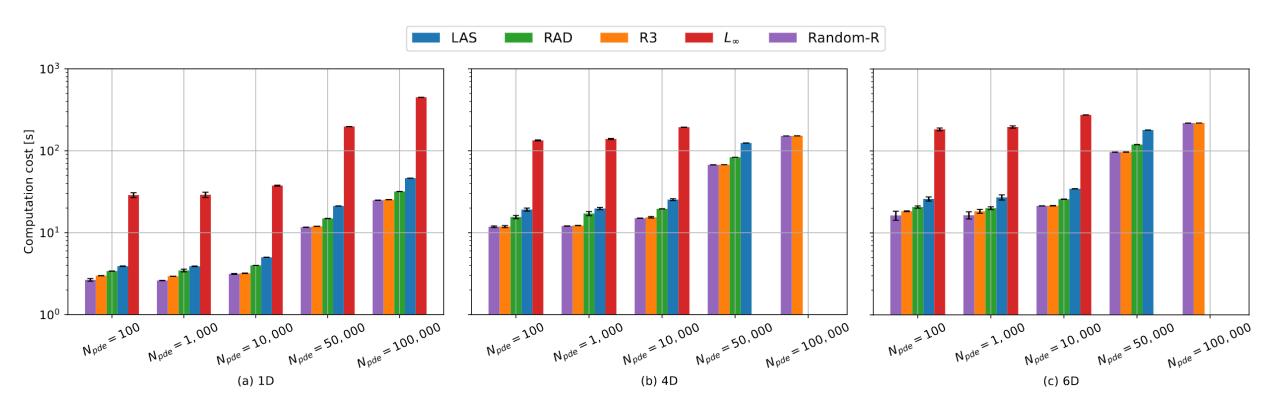
Experimental result

Robustness across various experimental setup

Scales with NN depth & learning rate

Experimental result

Robustness across various experimental setup


• Stable even in **high-dimensional PDEs** (up to 8D)

Sampling methods		LAS (ours)	Random-R	RAD	R3	L^{∞}
Number of layers		8	8	8	8	8
1D Allen-Cahn	100,1,1	0.77 ± 0.20	2.54 ± 2.30	0.99 ± 0.29	0.97 ± 0.23	$\boldsymbol{0.76 \pm 0.07}$
	200,1,1	0.89 ± 0.03	1.69 ± 0.38	1.15 ± 0.18	10.62 ± 19.56	$\boldsymbol{0.77 \pm 0.05}$
	10,1,1	1.02 ± 0.20	1.07 ± 0.48	1.25 ± 0.27	75.81 ± 32.72	86.77 ± 7.53
	10,1,5	$\boldsymbol{1.55 \pm 0.80}$	2.06 ± 0.40	2.79 ± 0.24	65.51 ± 18.70	98.77 ± 0.79
	1,1,1	13.20 ± 22.52	$\overline{\textbf{3.21} \pm \textbf{1.19}}$	14.65 ± 18.34	64.32 ± 7.30	90.81 ± 12.27
4D DF-heat	100,1,1	1.72 ± 0.23	9.73 ± 0.44	6.64 ± 2.72	9.53 ± 5.27	2.92 ± 1.95
	200,1,1	$\boldsymbol{1.82 \pm 0.42}$	8.87 ± 1.67	5.72 ± 0.42	6.50 ± 1.19	4.06 ± 1.87
	10,1,1	$\boldsymbol{1.79 \pm 0.20}$	7.98 ± 37.59	24.98 ± 37.59	16.08 ± 3.25	2.46 ± 0.67
	10,1,5	$\boldsymbol{2.85 \pm 0.34}$	25.18 ± 37.84	72.53 ± 32.73	15.57 ± 9.22	$4\overline{2.71 \pm 46.7}9$
	1,1,1	$\boldsymbol{1.86 \pm 0.20}$	7.73 ± 1.85	12.31 ± 1.24	13.56 ± 5.24	10.95 ± 14.41
6D DF-heat	100,1,1	3.49 ± 0.20	6.14 ± 0.42	13.84 ± 2.08	29.91 ± 35.23	4.46 ± 0.42
	200,1,1	$\boldsymbol{4.18 \pm 0.58}$	5.21 ± 0.82	10.63 ± 0.93	30.51 ± 34.90	4.39 ± 0.61
	10,1,1	$\boldsymbol{4.79 \pm 0.33}$	5.53 ± 0.81	31.81 ± 34.30	49.47 ± 41.28	$2\overline{6.37 \pm 37.05}$
	10,1,5	$\boldsymbol{7.33 \pm 1.37}$	70.30 ± 36.59	100.00 ± 0.00	69.37 ± 37.51	90.21 ± 19.57
	1,1,1	5.20 ± 0.92	53.18 ± 46.82	100.00 ± 0.00	61.37 ± 39.22	100.00 ± 0.00
8D DF-heat	100,1,1	$\textbf{7.72} \pm \textbf{0.59}$	52.41 ± 39.33	84.71 ± 30.56	100.00 ± 0.00	100.00 ± 0.00
	200,1,1	$\boldsymbol{6.92 \pm 0.31}$	17.63 ± 1.78	83.59 ± 32.80	100.00 ± 0.00	13.21 ± 4.46
	10,1,1	$\boldsymbol{7.97 \pm 0.30}$	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
	10,1,5	11.17 ± 0.65	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
	1,1,1	$\boldsymbol{9.08 \pm 0.50}$	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00

Experimental result

Computational efficiency & robustness to Langevin parameters

- Residual landscape changes slowly → no need for heavy Langevin iteration
 - > Just one step per iteration works
 - > Efficient and scales well as PDE dimension grows

Thank You!