

Chirality in Action: Time-aware Video Representation Learning by Latent Straightening

NeurlPS 2025

Piyush Bagad

Prof. Andrew Zisserman

Flavour 1: Arrow of time

• Distinguish between "forward" and "reverse" videos

Flavour 1: Arrow of time

• Distinguish between "forward" and "reverse" videos

Flavour 1: Arrow of time

• Distinguish between "forward" and "reverse" videos

• Cue: Reversed videos are often physically implausible

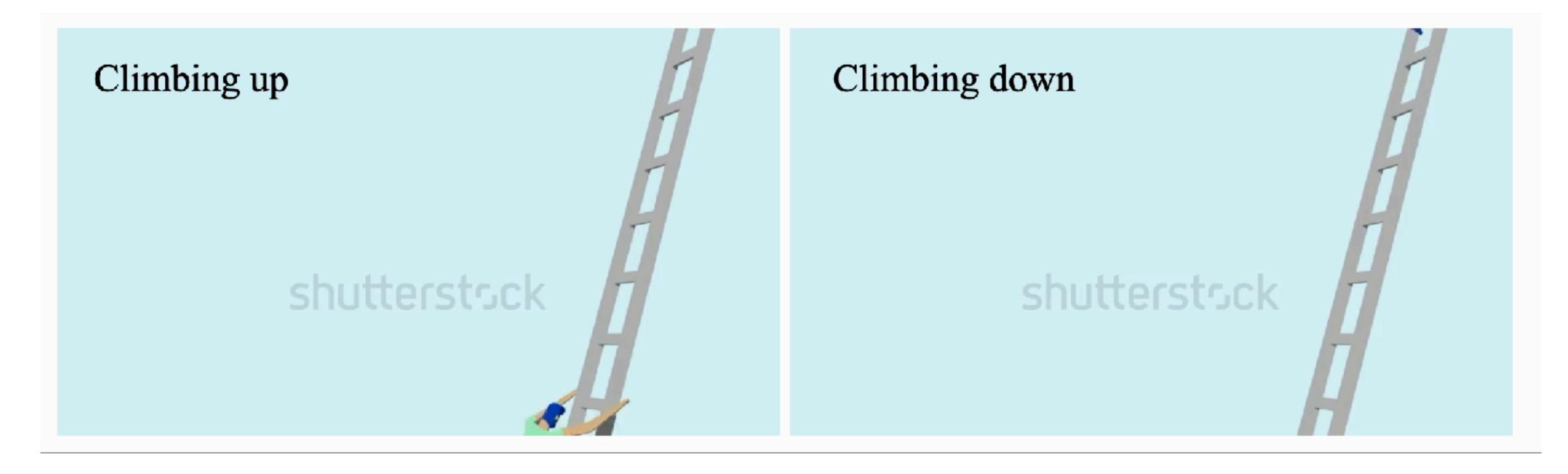
Flavour 2: Temporally opposite (chiral) actions

Flavour 2: Temporally opposite (chiral) actions

• Such actions have spatially similar contexts but temporally opposite verbs

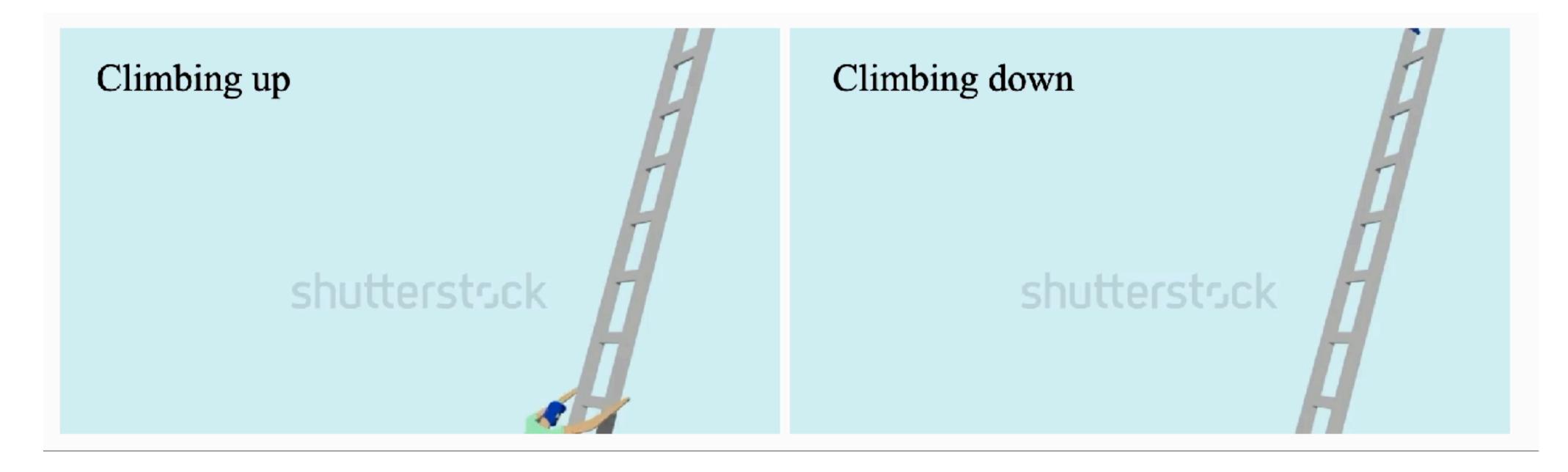
Flavour 2: Temporally opposite (chiral) actions

• Such actions have spatially similar contexts but temporally opposite verbs



Flavour 2: Temporally opposite (chiral) actions

• Such actions have spatially similar contexts but temporally opposite verbs



• Cue: Visual change (e.g., change in position)

(The lack of) time in video representations

Prior work

- A vast majority of the video benchmarks do not test for time-awareness
 - Can be solved with a single frame or few frames without temporal modelling

(The lack of) time in video representations

Prior work

- A vast majority of the video benchmarks do not test for time-awareness
 - Can be solved with a single frame or few frames without temporal modelling
- Many contemporary methods do not explicitly model temporal change
 - E.g., Perception Encoder uses average pool over frame embeddings

(The lack of) time in video representations

Prior work

- A vast majority of the video benchmarks do not test for time-awareness
 - Can be solved with a single frame or few frames without temporal modelling
- Many contemporary methods do not explicitly model temporal change
 - E.g., Perception Encoder uses average pool over frame embeddings
- Native video models like V-JEPA jointly model space-time but are very expensive to train from scratch

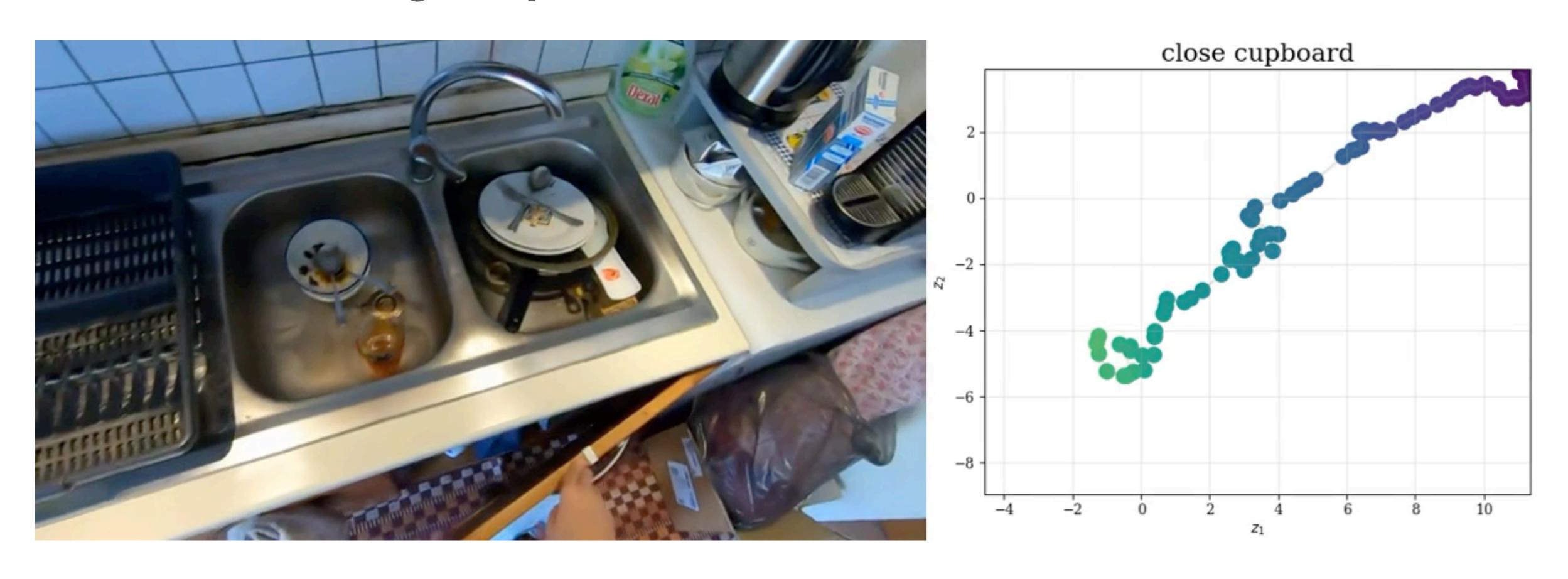
Introducing time in video representations

Outline of our work

- 1. A time-aware, compact video embedding model
- 2. A benchmark and measure of time-sensitivity (based on chiral actions)
- 3. Experimental evaluation

Building intuition

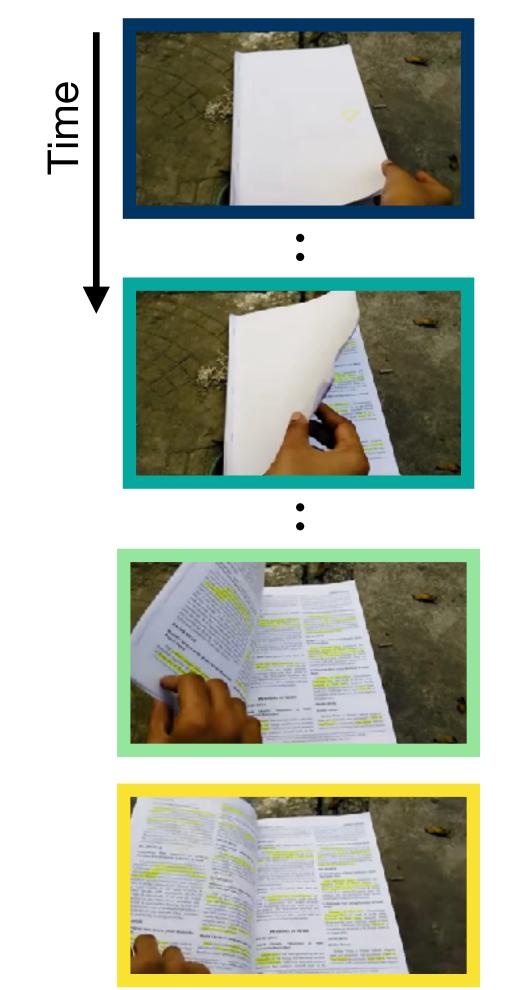
tSNE embeddings of per-frame DINOv2 features for a video

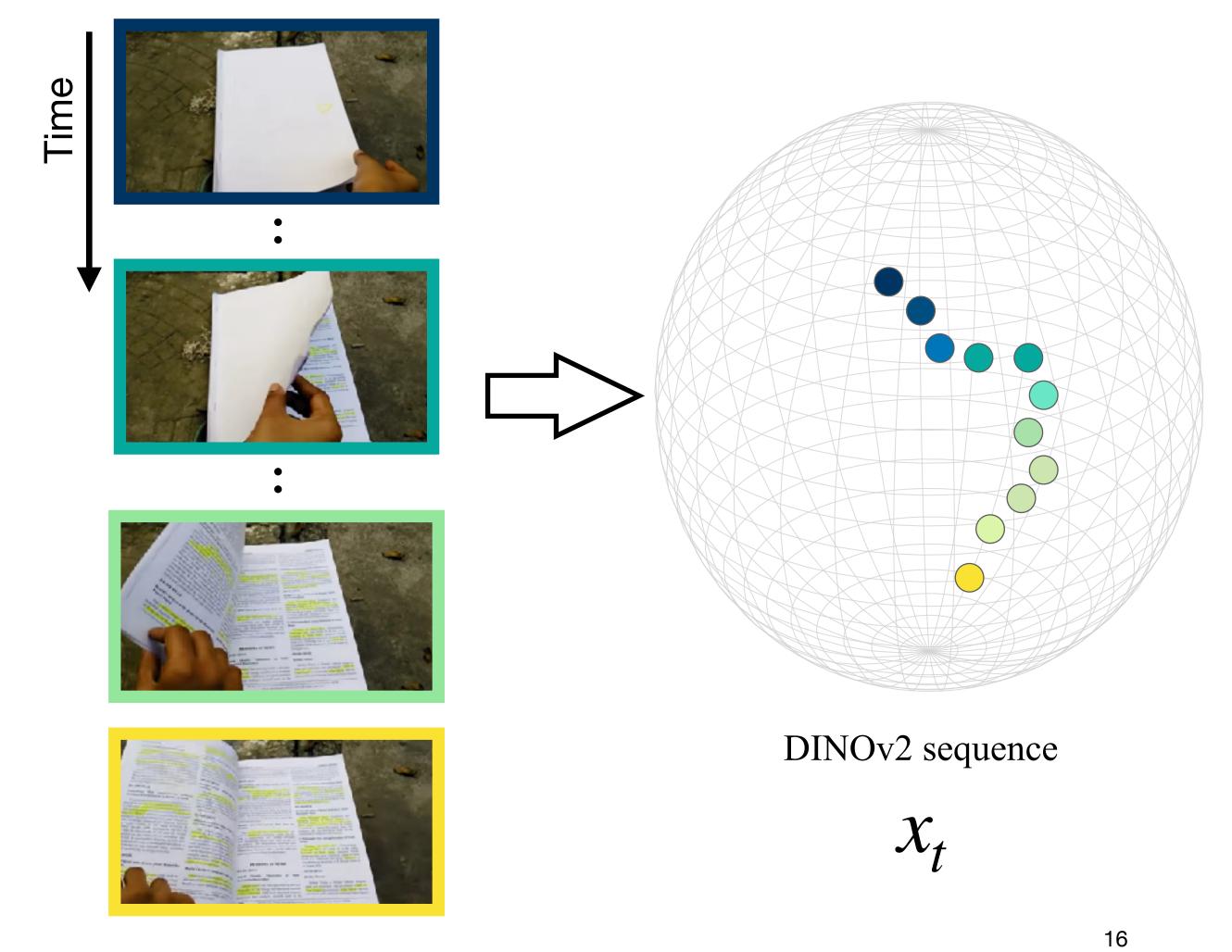


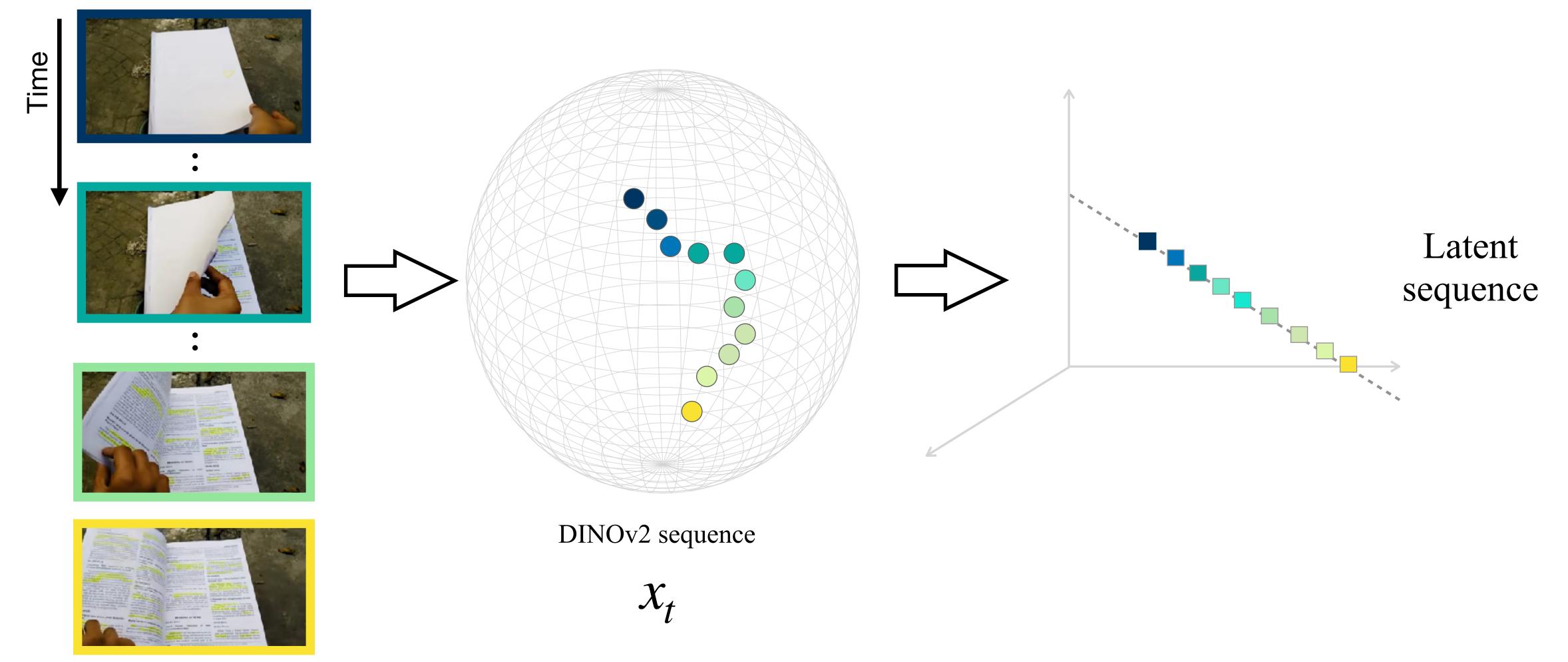
From intuition to the model

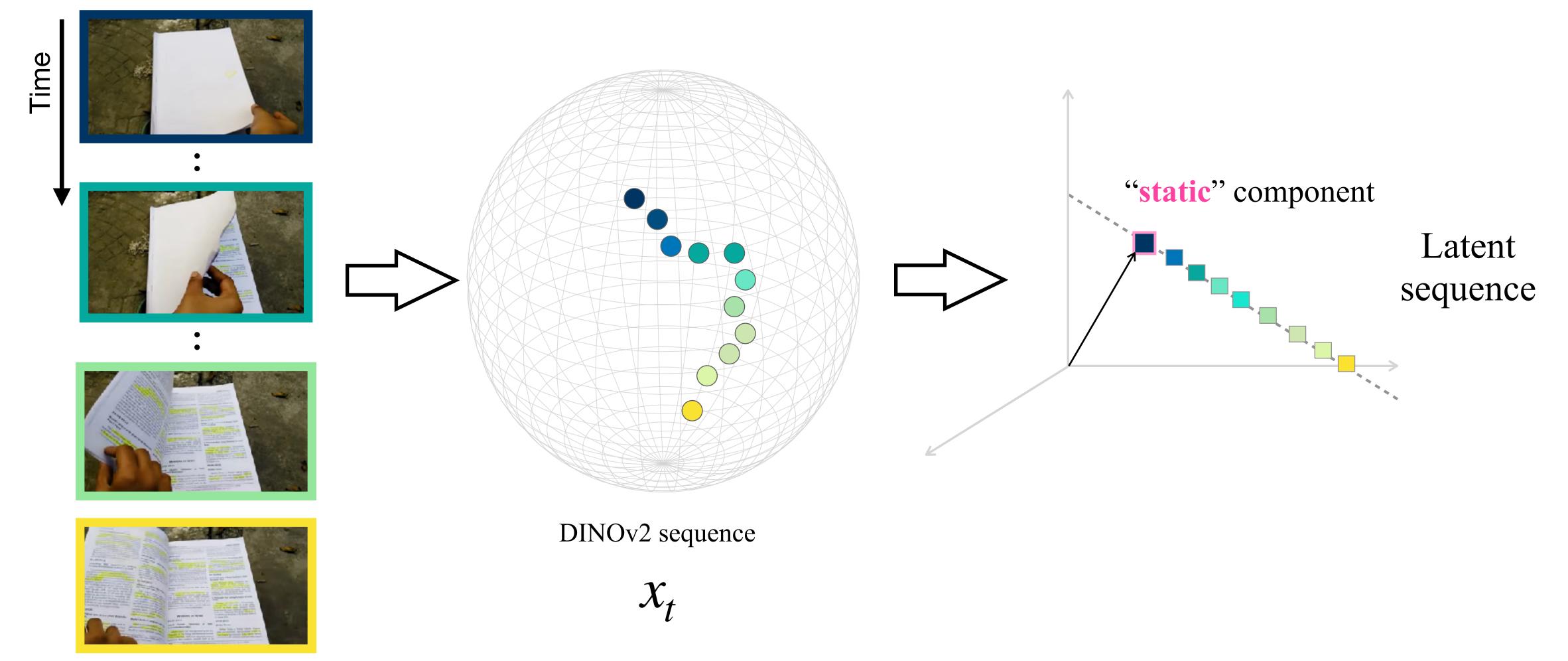
Key observation: The sequence of per-frame DINOv2 features lie on a time-sensitive trajectory!

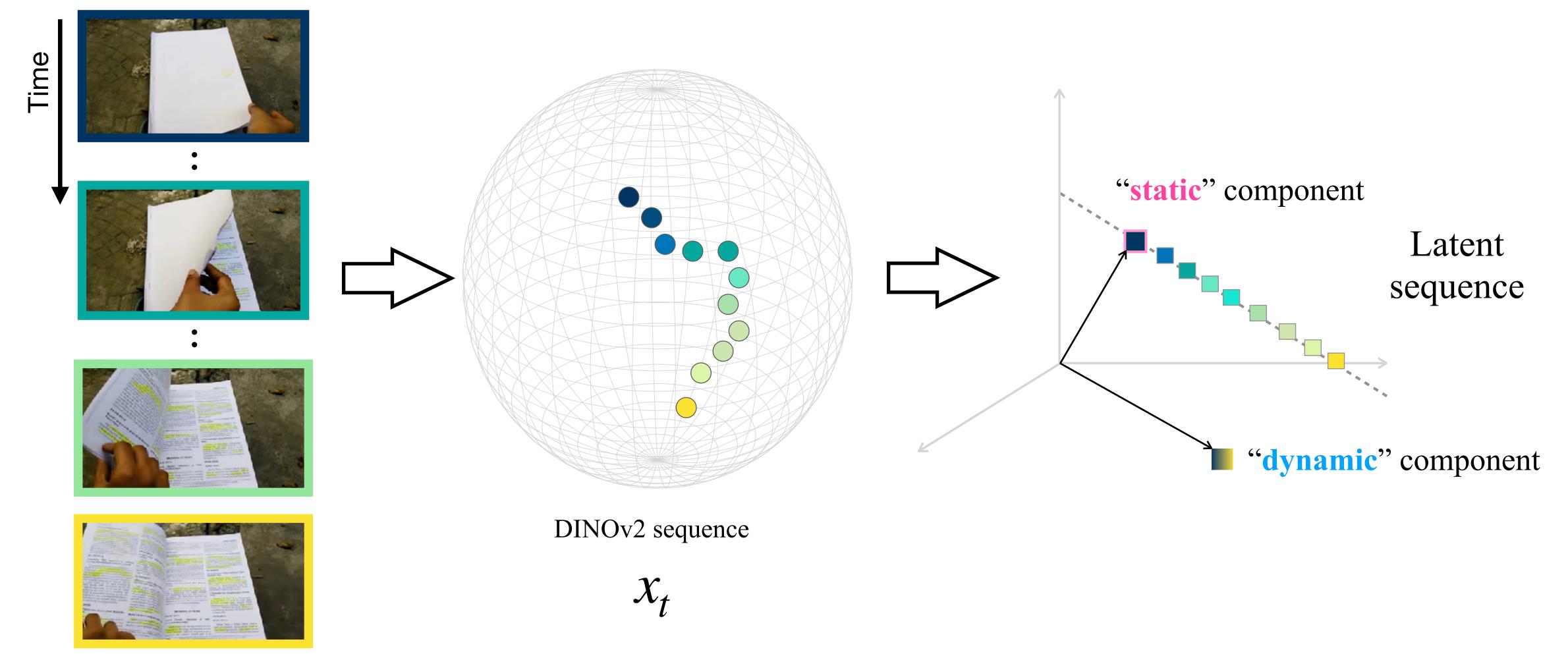
If we can learn to "summarise" this trajectory in a single vector, then we have a time-sensitive embedding.

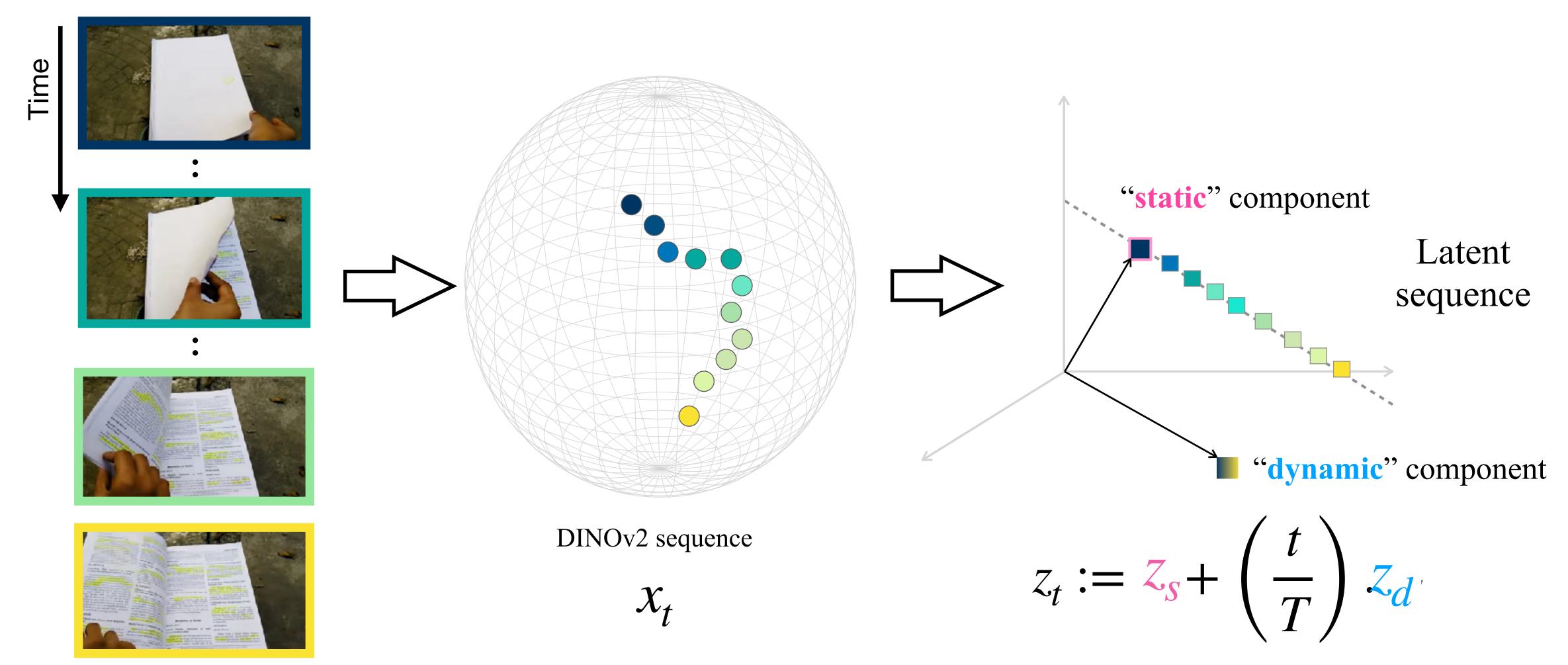


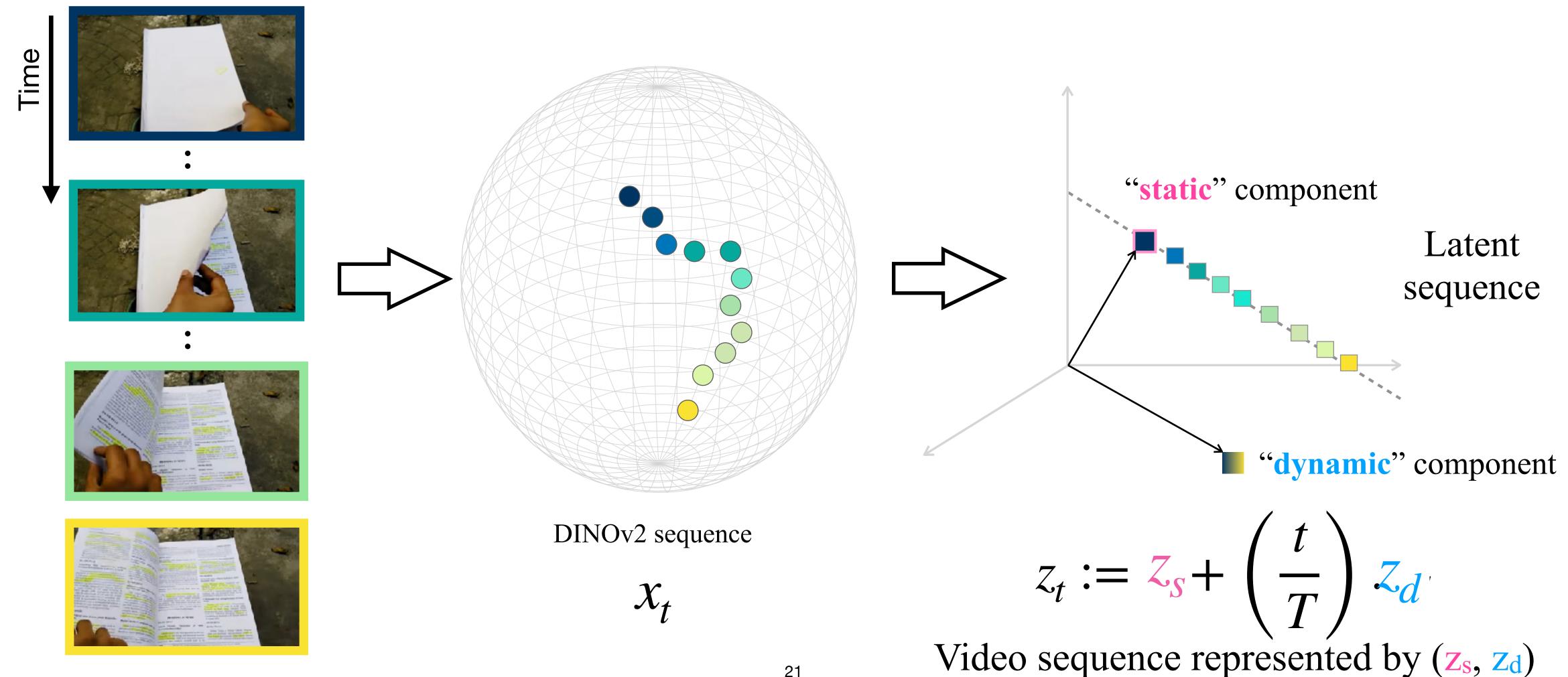




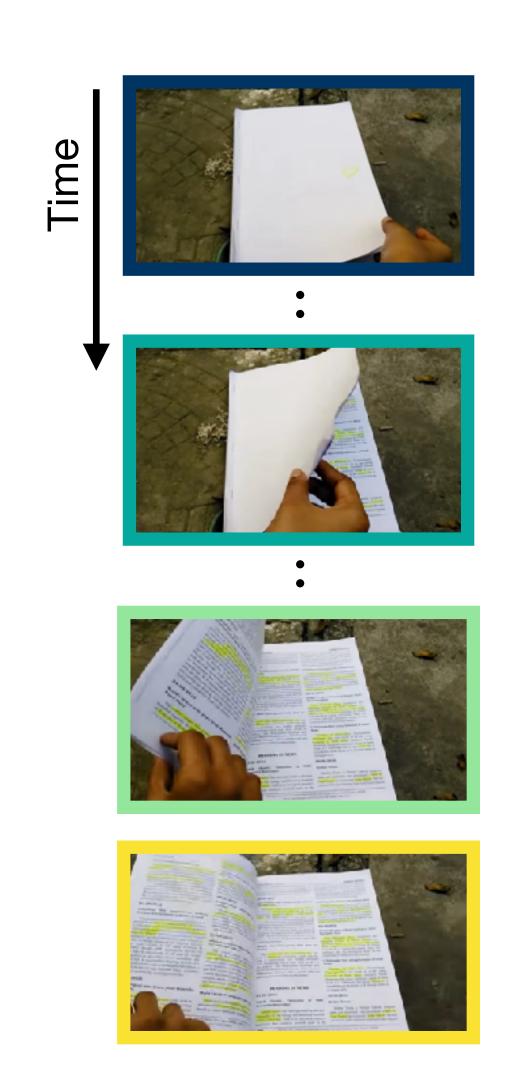


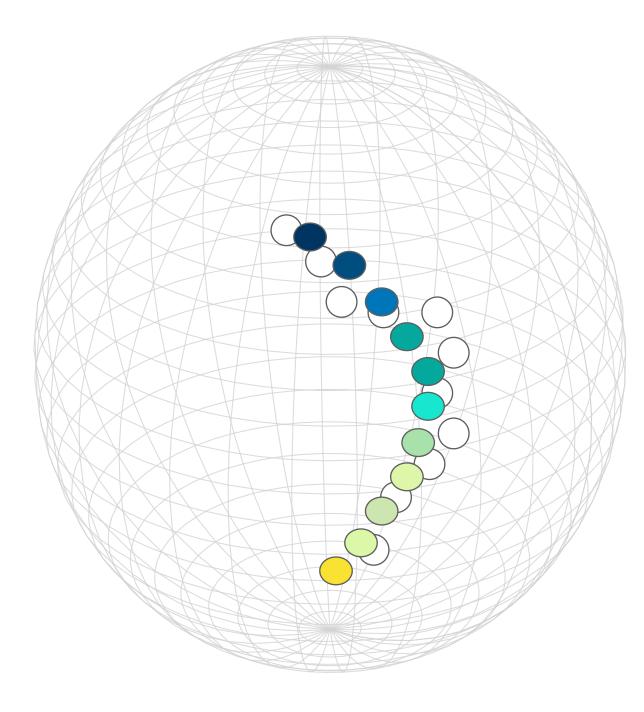


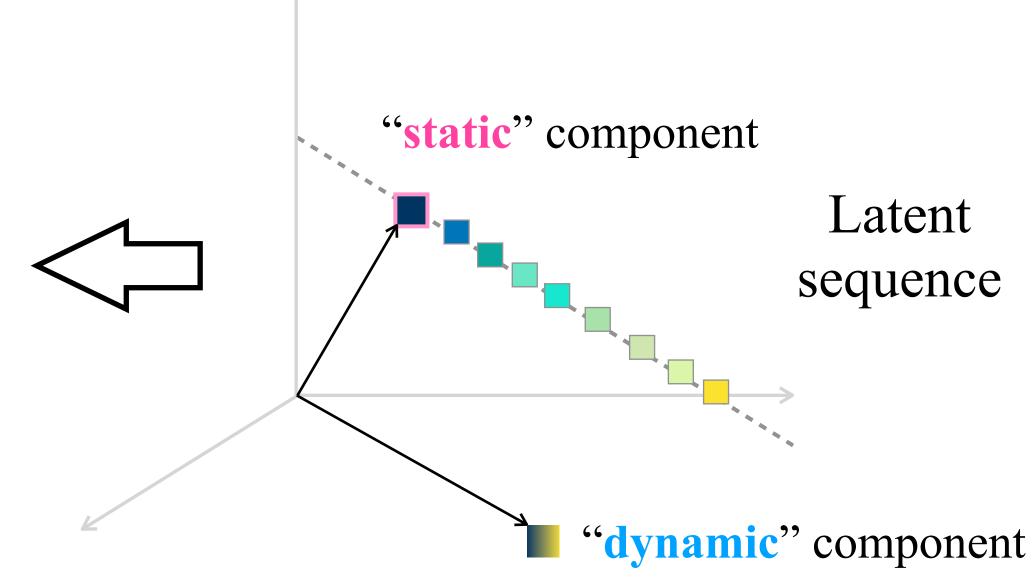




Decoding







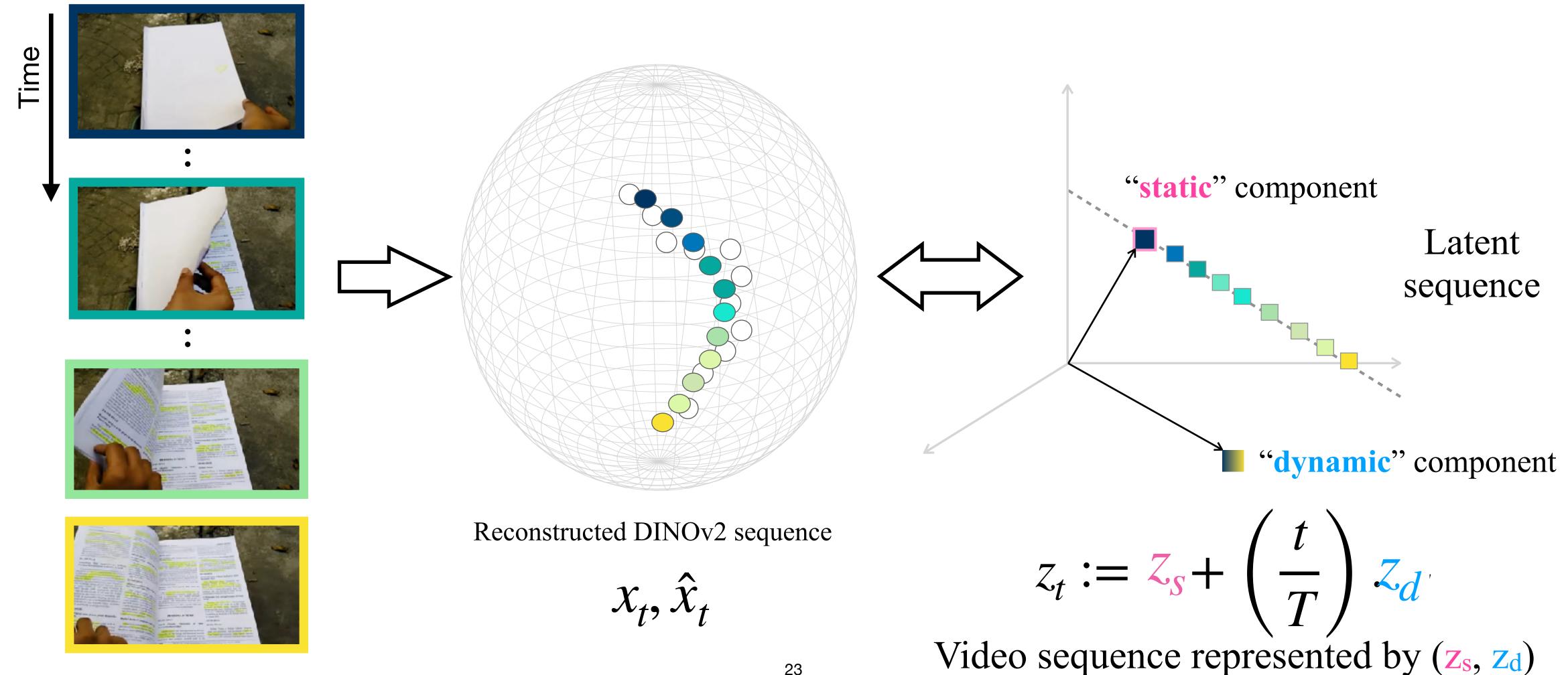
Reconstructed DINOv2 sequence

 \hat{X}_t

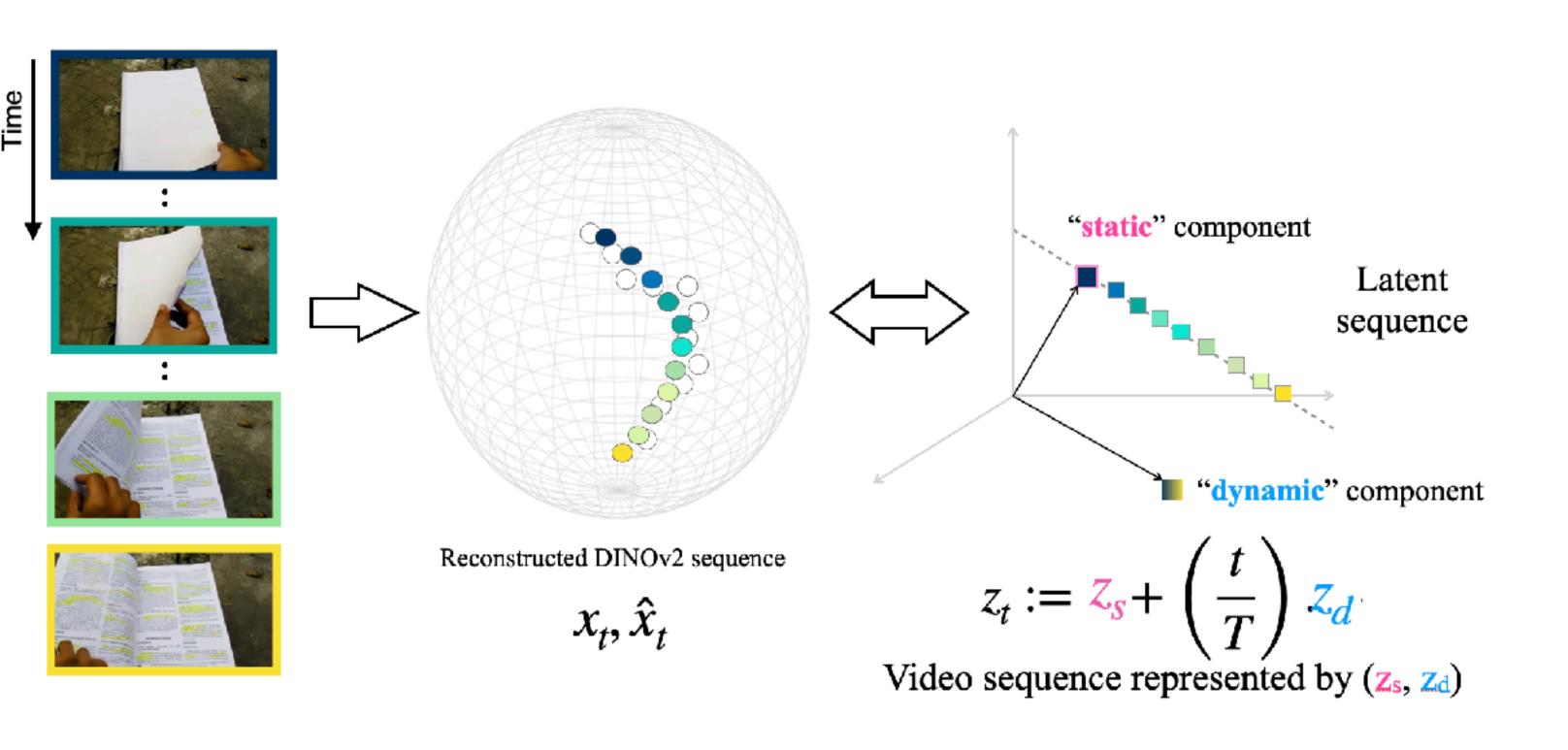
$$z_t := z_s + \left(\frac{t}{T}\right) z_d$$

Video sequence represented by (z_s, z_d)

Auto-Encoder



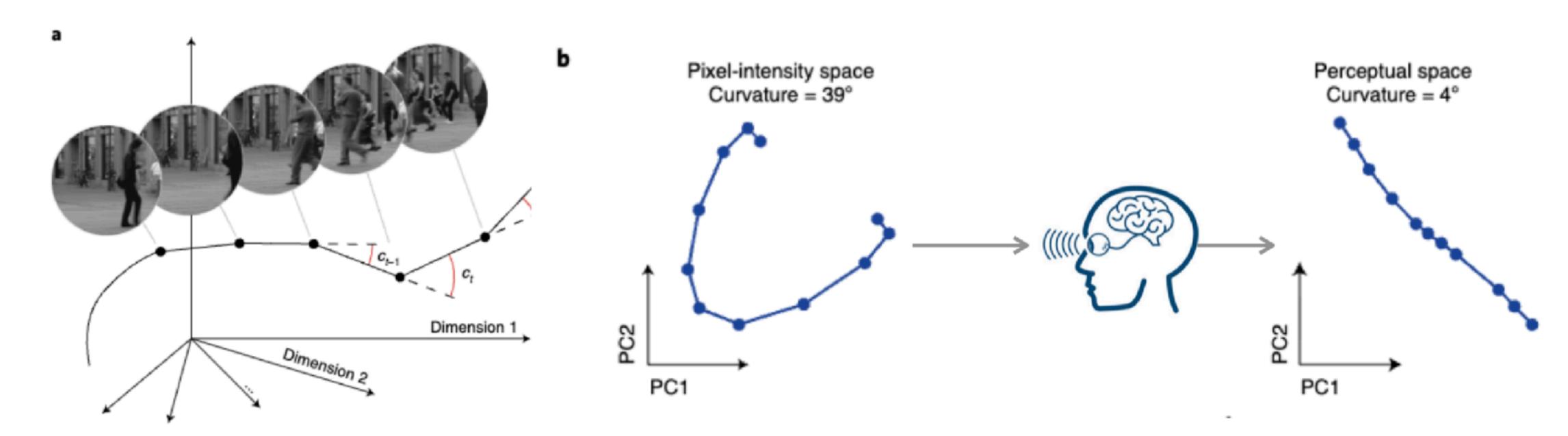
Auto-Encoder



- Time-aware by design: as it has to generate entire DINO sequence
- Compact as dimension of latents << dimension of temporal DINO sequence
- Simple: feature trajectory is mapped to a linearised space

LiFT is loosely inspired by "Perceptual Straightening Hypothesis"

Henaff et al. (2019) hypothesized that humans convert non-linear spatial representations of naturally occurring videos into linear temporal trajectories.



[1] Perceptual straightening of natural videos. Olivier J. Hénaff, Robbe L. T. Goris and Eero P. Simoncelli. Nature 2019.

LiFT: Self-supervised training

$$\mathcal{L} := \mathcal{L}_{\text{rec}} + \lambda \mathcal{L}_{\text{orth}} = \sum_{t=1}^{T} \lVert \mathbf{x}_t - \hat{\mathbf{x}}_t \rVert_2^2 + \lambda. \operatorname{cos-sim} \left(\frac{\mathbf{z}_s}{\lVert \mathbf{z}_s \rVert_2}, \frac{\mathbf{z}_d}{\lVert \mathbf{z}_d \rVert_2} \right)$$

- Trained on 240K videos from Kinetics-400 with usual reconstruction loss and an orthogonality regularisation
- LiFT can be trained in < 1 day on a single GPU

Chirality in Action (CiA) Benchmark

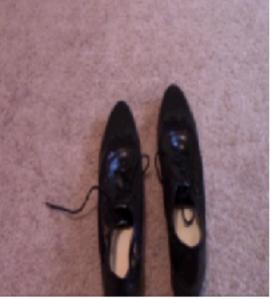
- (Meta) dataset to probe temporal ability of video embeddings
- Steps:
 - 1. Come up with temporal antonym verb pairs (e.g., open/close, move up/move down, etc.)
 - 2. Mine 3 datasets (Something-something v2, EPIC, Charades) for such pairs
 - 3. Manually review and filter

Base dataset	Chiral groups	Avg videos/group	Example chiral group
Something-Something (SSv2)	16	852.8	Folding / Unfolding [something]
EPIC-Kitchens (EPIC)	66	412.2	Opening / Closing [door]
Charades	28	768.4	Taking / Putting a [laptop]

Chirality in Action (CiA): Examples

moving cup and cup away from each other

moving shoe and shoe closer to each other

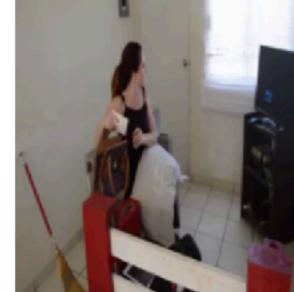


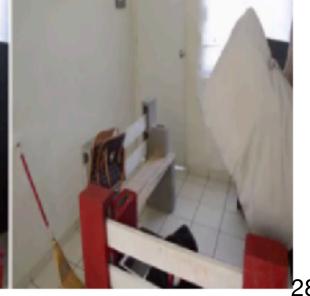
open freezer

close freezer

someone is standing up from somewhere

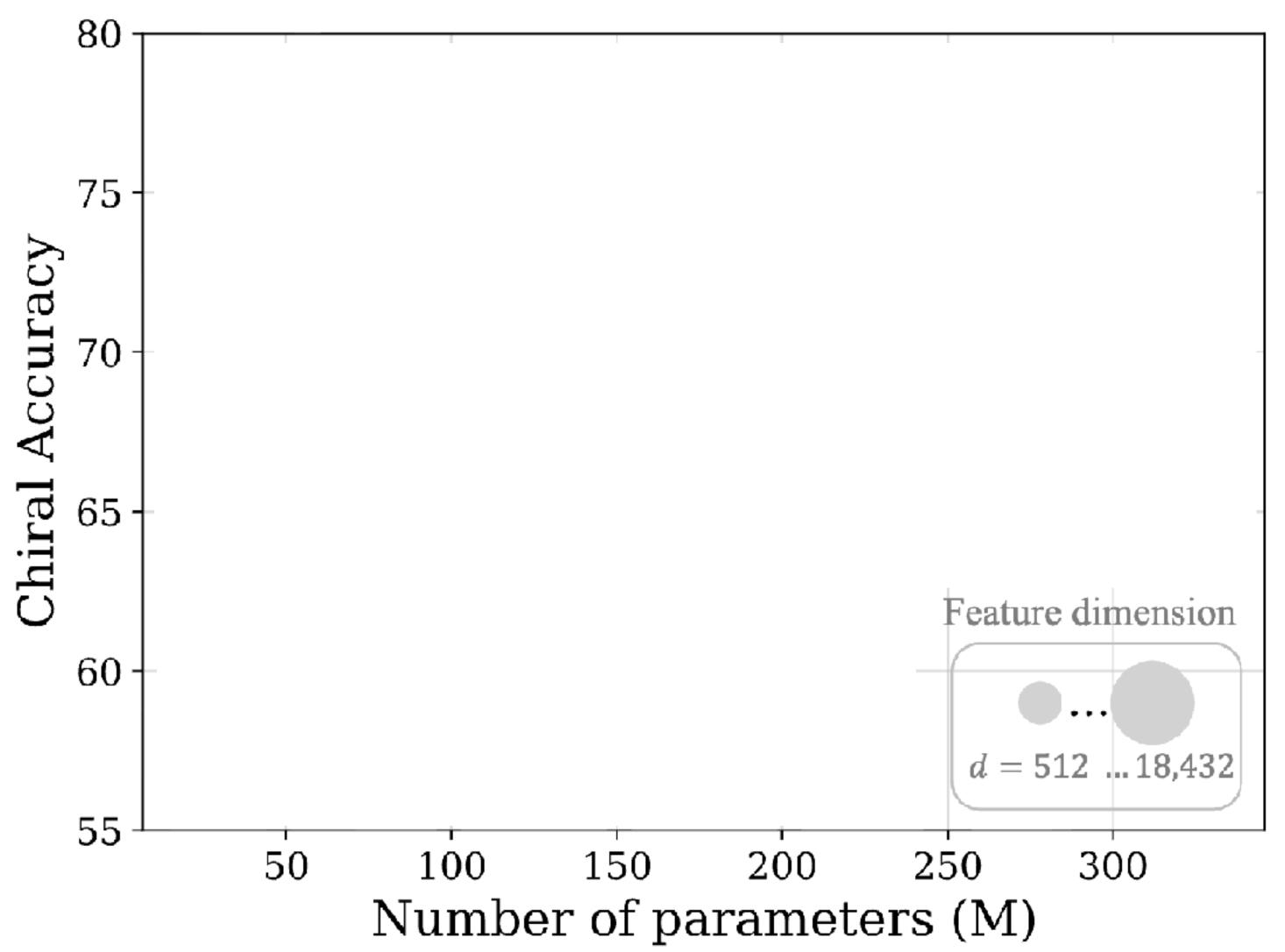
someone is going from standing to sitting



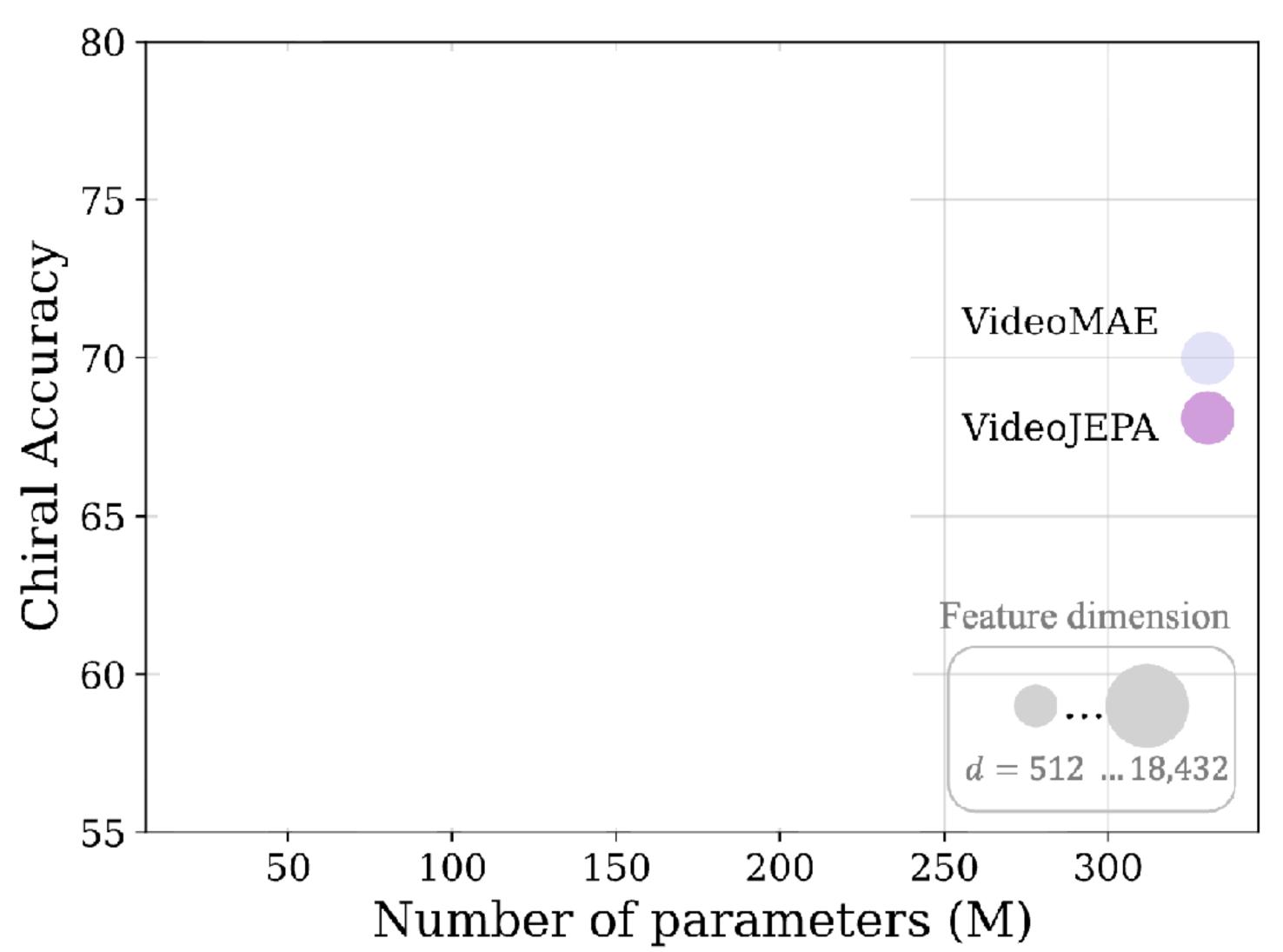


SSV2

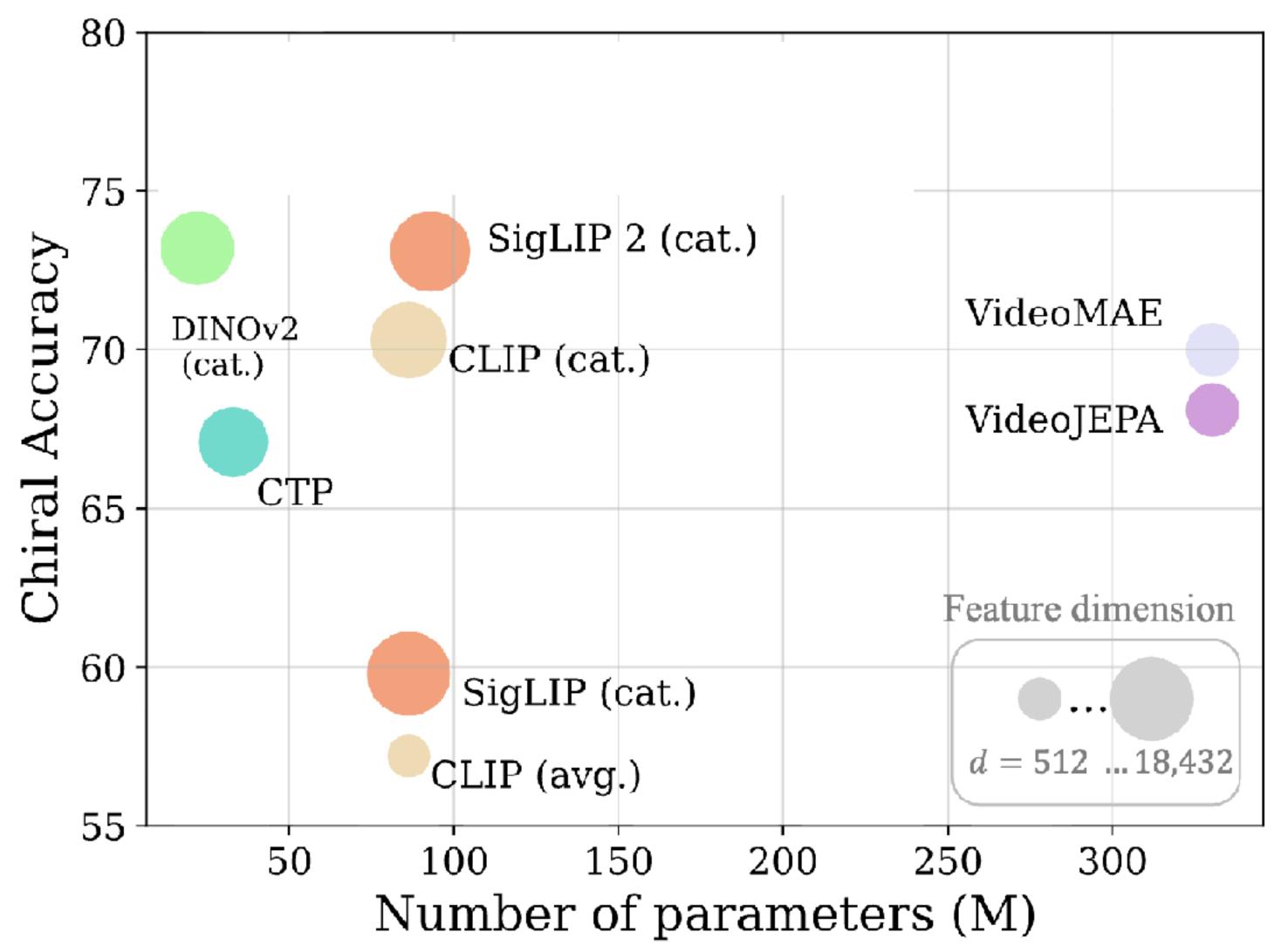
Chance is at 50%



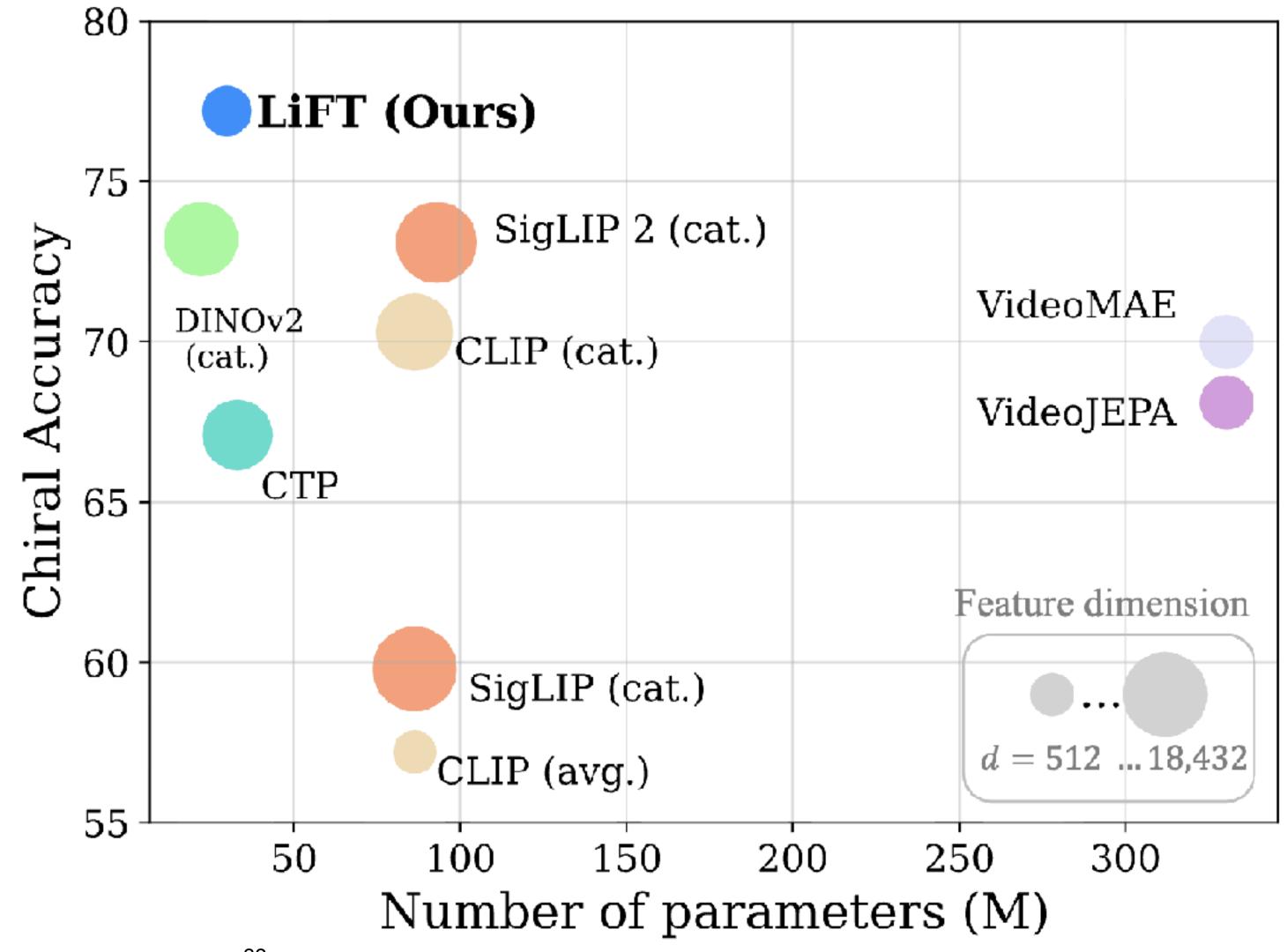
- Chance is at 50%
- Video models like VideoJEPA perform well but are heavy



- Chance is at 50%
- Video models like VideoJEPA perform well but are heavy
- Concatenating all image features (e.g., DINOv2) is very bulky



- Chance is at 50%
- Video models like VideoJEPA perform well but are heavy
- Concatenating all image features (e.g., DINOv2) is very bulky
- LiFT outperforms all of them while being compact & has fewer parameters



• Setup: linear probe evaluation on standard benchmarks

Model	K400	UCF	HMDB	SSv2
Chance	0.25	0.99	1.96	0.58

- Setup: linear probe evaluation on standard benchmarks
- LiFT by itself achieves reasonable % but is not state-of-the-art

Model	K400	UCF	HMDB	SSv2
Chance	0.25	0.99	1.96	0.58
LiFT	55.4	86.6	65.2	30.8

- Setup: linear probe evaluation on standard benchmarks
- LiFT by itself achieves reasonable % but is not state-of-the-art
- However, LiFT when combined with existing models achieves stateof-the-art performance

Model	K400	UCF	HMDB	SSv2
Chance	0.25	0.99	1.96	0.58
LiFT	55.4	86.6	65.2	30.8
VJEPA	59.8 [†]	91.3	76.1	49.6^{\dagger}
$VJEPA \oplus LiFT$	63.7	92.6	78.0	52.3
Δ	+3.9	+1.3	+1.9	+2.7

- Setup: linear probe evaluation on standard benchmarks
- LiFT by itself achieves reasonable % but is not state-of-the-art
- However, LiFT when combined with existing models achieves stateof-the-art performance

Model	K400	UCF	HMDB	SSv2
Chance	0.25	0.99	1.96	0.58
LiFT	55.4	86.6	65.2	30.8
VJEPA VJEPA ⊕ LiFT Δ	59.8†	91.3	76.1	49.6^{\dagger}
	63.7	92.6	78.0	52.3
	+3.9	+1.3	+1.9	+2.7
$\begin{array}{c} \textbf{VideoMAE}\\ \textbf{VideoMAE} \oplus \textbf{LiFT}\\ \Delta \end{array}$	55.0	83.6	66.5	38.3
	63.6	88.8	72.6	46.3
	+8.6	+5.2	+6.1	+6.0

- Setup: linear probe evaluation on standard benchmarks
- LiFT by itself achieves reasonable % but is not state-of-the-art
- However, LiFT when combined with existing models achieves stateof-the-art performance

Model	K400	UCF	HMDB	SSv2
Chance	0.25	0.99	1.96	0.58
LiFT	55.4	86.6	65.2	30.8
VJEPA	59.8†	91.3	76.1	49.6^{\dagger}
$VJEPA \oplus LiFT$ Δ	63.7	92.6	78.0	52.3
	+3.9	+1.3	+1.9	+2.7
$\begin{array}{c} \textbf{VideoMAE}\\ \textbf{VideoMAE} \oplus \textbf{LiFT}\\ \Delta \end{array}$	55.0	83.6	66.5	38.3
	63.6	88.8	72.6	46.3
	+8.6	+5.2	+6.1	+6.0
InternVid2.5	62.8	88.2	71.9	23.4
InternVid2.5 \oplus LiFT	65.9	90.3	75.3	35.9
Δ	+3.1	+2.1	+3.4	+11.5

Summary

- LiFT, a simple video embedding model:
 - Time-aware
 - Compact
 - Self-supervised
- CiA: a benchmark of chiral (temporally opposite) action pairs to probe video embedding models
- LiFT achieves strong performance on CiA but also lifts up performance of defacto video encoders on standard benchmarks

Thank you!

Project page