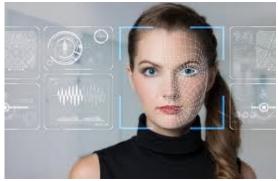


Functional Virtual Adversarial Training for Semi-supervised Time Series Classification

Qingyi Pan, Yicheng Li Tsinghua University 2025.02

Background

- Machine learning are applied in various scenarios
 - ☐ Image Classification; Speech Separation; NLP; Time Series;
- The real-world scenarios include



Self-driving car

- ✓ Image recognition
- ✓ Environment perception
- ✓ Autonomous decision

Face Detection

- ✓ Liveness detection
- ✓ Face recognition
- ✓ Facial expression

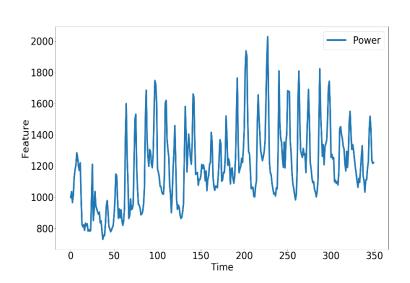
Game Theory

- Environment perception
- ✓ Decision making
- ✓ Collaborative plan

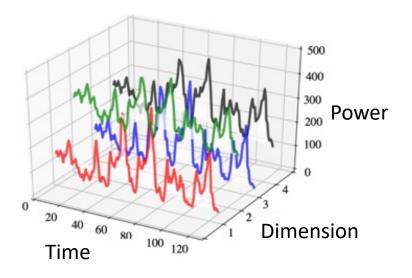
Background

Time Series

- □ Time series is a sequence of observations indexed in temporal order.
 - $S = [s_1, s_2, ..., s_t, ...].$ $s_t \in R^D$
 - Clustering, Forecasting, Classification, Anomaly Detection



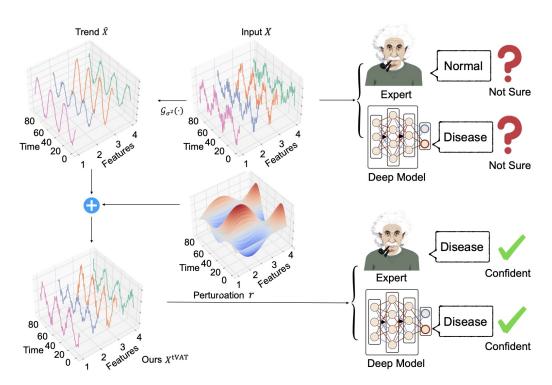
Univariate Time Series



Multivariate Time Series

Background

- Just collect more data?
- Semi-supervised Learning
 - □ Use unlabeled examples during training
 - □ Easy to find for time series data.

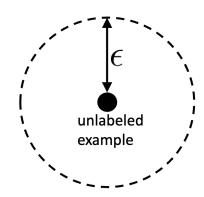


Preliminaries

- Consistency Regularization [Miyato et al., 2018]
 - Add perturbation to the inputs

$$\mathcal{L}_{CE}(p(y|x_j;\theta),p(y|x_j+r;\theta))$$
Soft target Add perturbation

- lacktriangle Where η is a vector with a random direction and a magnitude ϵ
- ☐ The model should give consistent predictions to nearby samples
 - "Local Distributional Smoothing (LDS)"
 - Perturbation is not chosen randomly (Adversarial)



Motivation

- While for Time Series Data? [Miyato et al., 2018]
 - Create an adversarial example η by maximizing LDS

$$\max \mathcal{L}_{CE}\left(p(y|x_{j};\theta),p(y|x_{j}+r;\theta)\right); \ r^{*} = \epsilon \frac{\nabla_{x} \mathcal{L}_{CE}}{\|\nabla_{x} \mathcal{L}_{CE}\|}$$

Soft target Add perturbation

- where r is not chosen randomly (Adversarial)
- Introduce abnormal patterns (e.g., Spiky)

Motivation

- While for Time Series Data? [Miyato et al., 2018]
 - \square Create an adversarial example η by maximizing LDS

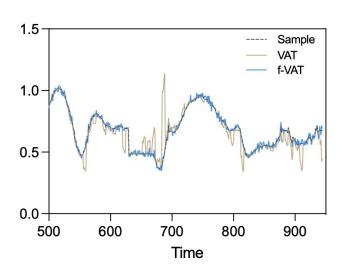
$$\max \mathcal{L}_{CE}\left(p(y|x_{j};\theta),p(y|x_{j}+r;\theta)\right); \quad r^{*} = \epsilon \frac{\nabla_{x} \mathcal{L}_{CE}}{\|\nabla_{x} \mathcal{L}_{CE}\|}$$

Soft target

Add perturbation

- where r is not chosen randomly (Adversarial)
- Introduce abnormal patterns (e.g., Spiky)





Our Methods

Proposition (Functional linear model)

If $f(X) = \langle \beta, X \rangle_{L^2}$ with $\beta \in L^2$, then

$$\sup_{\|r\|_{E} \leq \epsilon} |f(X+r) - f(X)|^2 = \sup_{\|r\|_{E} \leq \epsilon} \langle \beta, r \rangle_{L^2}^2 = \epsilon^2 \|\beta\|_{E^*}^2,$$

with the appropriate dual embedding between E, L^2 , and E^* . If $E = \ell_p$ with dual ℓ_q (1/p + 1/q = 1), then

$$\sup_{\|r\|_p \le \epsilon} \langle g, r \rangle = \epsilon \|g\|_q,$$

Theorem (First-order regime (informal limit))

If f is Fréchet-differentiable at X with gradient $\nabla f(X) \in L^2$, then

$$\lim_{\epsilon \to 0^+} \epsilon^{-2} \sup_{\|r\|_{E} \leq \epsilon} |f(X+r) - f(X)|^2 = \|\nabla f(X)\|_{E^*}^2.$$

Our Methods

Algorithm 1 Functional Virtual Adversarial Training Step

- 1: **Input**: Data batch $\mathcal{D}, \mathcal{D}^l$, model f_{θ} , order of the Sobolev norm $s \geq 0$, radius ϵ , adversarial iterations L, learning rate η .
- 2: for each sample $X_i \in \mathcal{D}$ do

 \triangleright Approximate r_i^*

- 3: Randomly initialize perturbation vector r_i over $||r_i||_{H^{-s}} \le \epsilon$.
- 4: **for** $\ell = 1 \rightarrow L$ **do**
- 5: Gradient ascent $r_i \leftarrow r_i + \eta \nabla_{r_i} \text{LDS}(X_i, r_i; f_\theta)$
- 6: Normalize $r_i \leftarrow \epsilon \frac{r_i}{\|r_i\|_{H^{-s}}}$.
- 7: **end for**
- 8: end for
- 9: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}(\theta)$, where $\mathcal{L}(\theta) = \mathcal{L}_0(\mathcal{D}^l; f_{\theta}) + \frac{1}{|\mathcal{D}|} \sum_{X_i \in \mathcal{D}} \text{LDS}(X_i, r_i; f_{\theta})$

$$egin{aligned} ext{LDS}(X,r;f_{ heta}) &= \left\|f_{ heta}(X+r) - f_{ heta}(X)
ight\|_2^2, \quad r^*(X) = rg\max_{\left\|r
ight\|_{H-s} \leq \epsilon} ext{LDS}(X,r;f_{ heta}). \ \mathcal{L}(heta) &= rac{1}{|\mathcal{D}'|} \sum \mathcal{L}_{ ext{CE}}(f_{ heta}(X),y) + rac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} ext{LDS}(X,r^*(X);f_{ heta}). \end{aligned}$$

- Experimental Setup
 - ☐ 30+ UCR/UEA datasets
 - □ Domestic Futures 50/300/500
 - □ 0.1/0.2/0.4 label ratios

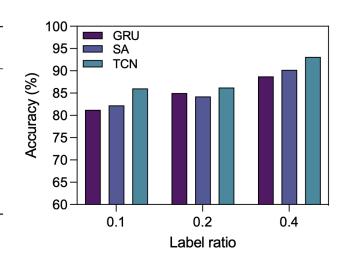
Dataset	Samples	Length	Dim	Class
CricketX	780	300	1	12
UWave	4478	948	1	8
InsectWing	2200	256	1	11
SelfReg	380	1152	7	2
NATOPS	360	51	24	6
Heartbeat	409	405	61	5

■ Empirical Results

Dataset	Ratio	SupL	PI	MTL	SemiTime	TapNet	VAT	f-VAT
	10%	44.88 ± 0.51	38.87 ± 2.26	40.94 ± 1.97	44.88 ± 3.13	39.42 ± 0.82	42.85 ± 3.97	49.18 ±1.96
CricketX	20%	$51.61{\scriptstyle~\pm0.45}$	$\textbf{44.44} \pm 2.91$	$50.12 \pm \scriptstyle{1.22}$	$51.61{\scriptstyle~\pm0.66}$	$51.41{\scriptstyle~\pm 0.31}$	49.14 ± 0.50	57.91 ±3.58
	40%	$58.71{\scriptstyle~\pm0.46}$	53.39 ± 2.18	$55.10{\scriptstyle~\pm1.12}$	$58.71{\scriptstyle~\pm 2.78}$	$58.97 \pm \scriptstyle{0.72}$	58.63 ± 0.50	68.39 ± 2.25
	10%	81.46 ±0.18	81.53 ± 0.54	76.35 ± 0.56	81.46 ±0.60	82.34 ± 0.58	94.41 ±0.09	94.82 ±0.39
UWave	20%	84.57 ± 0.87	81.66 ± 0.74	$81.77 \pm \scriptstyle{0.94}$	$84.57 \pm \scriptstyle{0.49}$	$86.35 \pm \scriptstyle{0.43}$	$95.53 \pm \scriptstyle{0.31}$	96.45 ± 0.27
	40%	$86.91{\scriptstyle~\pm 0.98}$	86.45 ± 1.20	$86.91{\scriptstyle~\pm0.68}$	$86.91{\scriptstyle~\pm0.47}$	89.24 ± 0.69	94.76 ± 0.54	97.23 ±0.43
	10%	54.96 ±1.25	43.16 ± 3.20	50.45 ± 1.01	54.96 ±1.61	55.53 ±1.18	55.49 ± 1.28	58.01 ±1.12
InsectWing	20%	$59.01{\scriptstyle~\pm1.13}$	$48.35 \pm \scriptstyle{0.81}$	$56.43 \pm \scriptstyle{0.88}$	$59.01{\scriptstyle~\pm1.56}$	60.36 ± 0.38	$61.27{\scriptstyle~\pm 0.19}$	61.28 ± 1.86
	40%	$62.38 \pm \scriptstyle{1.39}$	55.32 ± 2.04	60.90 ± 0.87	62.38 ± 0.76	$63.87 \pm \scriptstyle{1.41}$	63.48 ± 0.30	64.81 ± 1.15
	10%	46.49 ± 2.01	50.44 ± 0.76	50.88 ± 2.01	49.68 ± 2.83	50.87 ± 3.31	53.12 ± 4.51	59.31 ±3.06
SelfReg	20%	52.44 ± 3.15	53.94 ± 2.63	52.19 ± 2.01	$52.63 \pm \scriptstyle{1.31}$	54.39 ± 2.74	55.76 ± 0.35	61.60 ± 1.13
	40%	$51.31{\scriptstyle~\pm3.48}$	55.69 ± 2.74	56.14 ± 2.01	49.56 ± 1.72	54.38 ± 0.76	53.47 ± 1.04	64.44 ±3.13
	10%	68.98 ± 2.89	75.83 ± 4.39	73.91 ± 3.73	68.52 ± 0.81	70.37 ± 7.12	82.38 ± 0.96	86.04 ±1.41
NATOPS	20%	$81.02{\scriptstyle~\pm 1.60}$	82.51 ± 1.25	$82.41{\scriptstyle~\pm 2.89}$	$80.09 \pm \scriptstyle{2.12}$	77.77 ± 1.39	$82.81{\scriptstyle~\pm0.52}$	86.25 ± 1.38
	40%	$88.89 \pm \scriptstyle{2.78}$	88.27 ± 1.19	$90.27{\scriptstyle~\pm 1.39}$	87.49 ± 2.41	82.87 ± 2.12	$90.15 \pm \scriptstyle{1.60}$	93.13 ± 0.15
Heartbeat	10%	67.08 ± 3.57	72.13 ± 1.99	71.61 ± 2.47	71.61 ± 1.71	72.84 ± 1.23	73.86 ± 0.59	76.25 ±1.22
	20%	$73.25 \pm \scriptstyle{0.71}$	$72.01{\scriptstyle~\pm 0.78}$	$73.66 \pm \scriptstyle{0.71}$	$74.49 \pm \scriptstyle{1.43}$	$73.24 \pm \scriptstyle{1.88}$	$71.59 \pm \scriptstyle{0.13}$	76.46 ± 1.06
	40%	67.08 ± 1.89	73.28 ± 1.53	73.61 ± 3.07	72.43 ± 3.11	73.66 ± 0.71	75.00 ± 0.11	77.28 ±0.40

■ More Empirical Results

Method	10%		20	0%	40%	
	AvgAcc	AvgRank	AvgAcc	AvgRank	AvgAcc	AvgRank
SupL	35.31	6.67	36.92	7.00	37.15	7.33
PI	53.09	3.93	55.16	4.40	63.60	4.47
MTL	45.19	5.70	45.72	5.87	46.11	6.80
meanTeacher	42.89	5.93	50.94	4.87	63.85	4.13
SemiTime	56.53	3.57	58.93	3.77	69.02	3.13
TapNet	58.67	3.70	60.41	3.40	70.28	3.17
CA-TCC	58.07	3.37	59.84	3.67	63.27	4.27
f-VAT	65.85	1.50	68.87	1.50	76.24	1.53



Futures Dataset

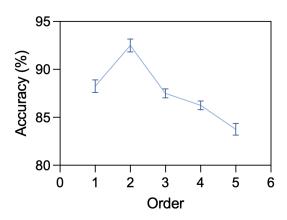
Futures	Ratio	SupL	PI	MTL	SemiTime	TapNet	CA-TCC	f-VAT
50	10% 20% 40%	45.08 ± 1.45	$42.87 \pm 1.45 \\ 47.26 \pm 0.73 \\ 52.42 \pm 1.21$	54.97 ± 0.61	56.69 ± 0.50	56.93 ± 1.28	$\begin{array}{c} 55.72 \pm 1.16 \\ 58.21 \pm 0.44 \\ 59.80 \pm 1.32 \end{array}$	
500	10% 20% 40%	35.38 ± 1.06	$\begin{array}{c} 44.00 \pm 0.06 \\ 46.57 \pm 0.48 \\ 49.25 \pm 0.55 \end{array}$	45.26 ± 0.29	46.04 ± 0.12	44.58 ± 1.70	45.05 ± 1.74	52.14 ±0.25

Fully Supervised Performance

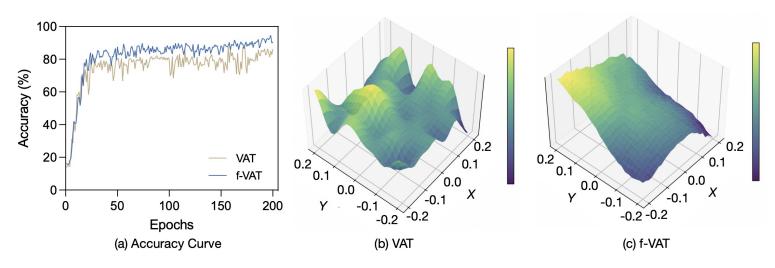
Dataset	Hive-COTE	ROCKET	ED	TapNet	ShapeNet	VAT	f-VAT
CricketX	74.10 ± 0.03	$76.10{\scriptstyle~\pm 0.01}$	62.90 ± 0.14	$66.20{\scriptstyle~\pm0.25}$	$68.30{\scriptstyle~\pm 0.51}$	68.54 ± 1.40	77.25 ±0.94
UWave	$92.10 \pm \scriptstyle{0.02}$	93.70 ± 0.04	$88.10 \pm \scriptstyle{0.12}$	89.40 ± 0.69	90.60 ± 0.13	$92.43 \pm \scriptstyle{0.47}$	97.75 ±0.13
InsectWing	$62.20{\scriptstyle~ \pm 0.01}$	64.70 ± 0.01	$60.20{\scriptstyle~\pm0.13}$	$67.30 \pm \scriptstyle{0.11}$	66.30 ± 0.02	$70.01{\scriptstyle~\pm1.16}$	71.70 ± 0.55
SelfReg	$51.60{\scriptstyle~\pm0.67}$	$51.40{\scriptstyle~\pm 0.59}$	$48.30 \pm \scriptstyle{0.12}$	55.10 ± 0.26	$57.80{\scriptstyle~\pm0.03}$	58.75 ± 1.25	60.21 ± 0.68
NATOPS	$82.80 \pm \scriptstyle{0.32}$	$88.50 \pm \scriptstyle{0.44}$	$85.10 \pm \scriptstyle{0.18}$	93.90 ± 0.01	88.30 ± 0.03	$87.58 \pm \scriptstyle{1.89}$	97.50 ±0.51
Heartbeat	$72.20{\scriptstyle~\pm0.52}$	$71.70{\scriptstyle~\pm0.02}$	$61.90{\scriptstyle~\pm 0.09}$	$72.10{\scriptstyle~\pm1.43}$	$75.60{\scriptstyle~\pm0.02}$	$76.08 \pm \scriptstyle{0.82}$	78.75 ± 0.41

Altering Order of Sobolev Norm

s	CricketX	UWave	InsectWing	NATOPS	SelfReg
0	58.63 ± 0.50	94.76 ± 0.54	63.48 ± 0.30	90.15 ± 1.60	53.47 ± 1.04
1	$59.91{\scriptstyle~\pm 2.32}$	96.54 ± 0.67	$66.70 \pm \scriptstyle{0.50}$	89.58 ± 0.12	56.16 ± 1.73
2	61.66 ± 2.33	$97.16 \pm \scriptstyle{0.28}$	$67.08 \pm \scriptstyle{0.86}$	93.13 ± 0.15	58.86 ± 0.35
3	60.44 ± 0.23	96.82 ± 0.16	64.10 ± 0.86	$90.10 \pm \scriptstyle{0.65}$	$51.39 \pm \scriptstyle{1.21}$
4	58.22 ± 3.39	$96.71{\scriptstyle~\pm 0.61}$	66.11 ± 0.82	$87.51{\scriptstyle~\pm0.52}$	50.93 ± 0.12



Visualization of Loss Landscape



Runtime Comparison

Method	CricketX	UWave	InsectWing	NATOPS	SelfReg
VAT	15.67	51.66	35.58	28.04	30.68
f-VAT	20.45	62.05	45.92	38.98	44.95
Δ (%)	30.50	20.11	29.06	39.02	46.51

Conclusion

- We propose the framework of functional Virtual Adversarial
 Training that construct perturbations in various function spaces.
- We theoretically establish the duality between the perturbation norm and gradient sensitivity to generate structured perturbations.
- We propose to use an appropriate Sobolev norm to capture lowfrequency trend information and better generalization.

