

Inference-Time Reward Hacking in Large Language Models Spotlight Award!

Hadi Khalaf, Claudio Mayrink Verdun, Alex Oesterling, Himabindu Lakkaraju, and Flavio du Pin Calmon

Al alignment methods aim to maximize a reward function

All alignment methods aim to maximize a reward function

... but what reward are we maximizing?

Al alignment methods aim to maximize a reward function

... but what reward are we maximizing?

There are two kinds:

1. Proxy rewards are the computable signals we can use *Example:* Scores from a trained reward model

Al alignment methods aim to maximize a reward function

... but what reward are we maximizing?

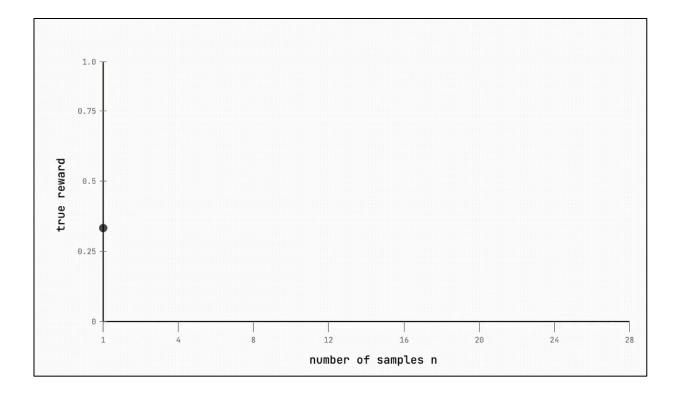
There are two kinds:

- **1. Proxy rewards** are the computable signals we can use *Example:* Scores from a trained reward model
- 2. True rewards are the quality of an output according to a desired objective *Example:* An output's helpfulness or toxicity

All proxy reward models are bad!

We are maximizing for the wrong reward.

This mismatch can cause reward hacking!



Inference-time Alignment

We leverage a reward model to improve our responses without any training.

Inference-time Alignment

We leverage a reward model to improve our responses without any training.

One example is **Best-of-n**.

For a given question,

- 1. Sample *n* responses
- 2. Score them using a reward model
- 3. Choose the one with the highest reward

Inference-time Alignment

We leverage a reward model to improve our responses without any training.

Another example is **Soft Best-of-n.**

For a given question,

- 1. Sample *n* responses
- 2. Score them using a reward model
- 3. Sample a response using a temperature-scaled softmax over rewards

Don't fully trust it. Instead, you should hedge!

Our contributions:

We characterize reward hacking in inference-time settings;

Our contributions:

We characterize reward hacking in inference-time settings;

We propose **Best-of-Poisson** that provides an efficient, near-exact approximation of the optimal policy at inference;

Our contributions:

We characterize reward hacking in inference-time settings;

We propose **Best-of-Poisson** that provides an efficient, near-exact approximation of the optimal policy at inference;

We introduce **HedgeTune**, a lightweight method to find the best inference-time parameter. We show that **HedgeTune** mitigates hacking on math, reasoning, and human-preference setups.

Consider an inference-time method with parameter θ .

Consider an inference-time method with parameter θ .

An inference-time method is *greedy* if as we increase θ , it becomes more likely to choose a response with higher proxy reward.

Example: Best-of-n!

Theorem (Informal): If the *inference-time method* is *greedy*, then the expected true reward attains *at most one extremum w.r.t.* θ .

Theorem (Informal): If the *inference-time method* is *greedy*, then the expected true reward attains at most one extremum w.r.t. θ .

Consequence: We explain hacking in Best-of-*n*.

If there is at most one maxima, search for it! This is the idea behind HedgeTune.

All alignment methods try to solve the following problem:

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg\max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}})$$

All alignment methods try to solve the following problem:

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg \max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}}) \ = \frac{\pi_{\mathsf{ref}}(x) e^{\lambda r_p(x)}}{Z(\lambda)}$$

All alignment methods try to solve the following problem:

Unrealizable in practice!

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg \max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}}) \ = \boxed{\frac{\pi_{\mathsf{ref}}(x) e^{\lambda r_p(x)}}{Z(\lambda)}}$$

All alignment methods try to solve the following problem:

Unrealizable in practice!

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg \max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}}) \ = \boxed{\frac{\pi_{\mathsf{ref}}(x) e^{\lambda r_p(x)}}{Z(\lambda)}}$$

We can estimate it through:

- RLHF: Expensive, need to rerun training for every penalty

All alignment methods try to solve the following problem:

Unrealizable in practice!

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg \max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}}) \ = \left[\frac{\pi_{\mathsf{ref}}(x) e^{\lambda r_p(x)}}{Z(\lambda)} \right]$$

We can estimate it through:

- RLHF: Expensive, need to rerun training for every penalty
- Best-of-n: Cheap but coarse control over the KL divergence

All alignment methods try to solve the following problem:

Unrealizable in practice!

$$\pi^*(x) = \underset{\pi_x \in \Delta_{\mathcal{X}}}{\arg \max} \, \mathbb{E}_{\pi_x} \left[r_p(X) \right] - \frac{1}{\lambda} D_{\mathsf{KL}}(\pi_x \| \pi_{\mathsf{ref}}) \ = \boxed{\frac{\pi_{\mathsf{ref}}(x) e^{\lambda r_p(x)}}{Z(\lambda)}}$$

We can estimate it through:

- RLHF: Expensive, need to rerun training for every penalty
- Best-of-n: Cheap but coarse control over the KL divergence
- Soft Best-of-n: Need to set two parameters (n, temperature)

For a given question:

- 1. Sample *n* from Poisson distribution
- 2. Sample *n* responses from the LLM
- 3. Score them using a reward model
- 4. Choose the one with the highest reward

We randomize wour *n*. This gives us continuous control over the KL divergence.

We show that the resulting **BoP** distribution is close to the optimal one!

HedgeTune

We propose **HedgeTune** as a one-time offline calibration of your inference-time parameter.

You can apply it to any LLM and any proxy reward with black-box access!

HedgeTune

We propose **HedgeTune** as a one-time offline calibration of your inference-time parameter. You can apply it to any LLM and any proxy reward with black-box access!

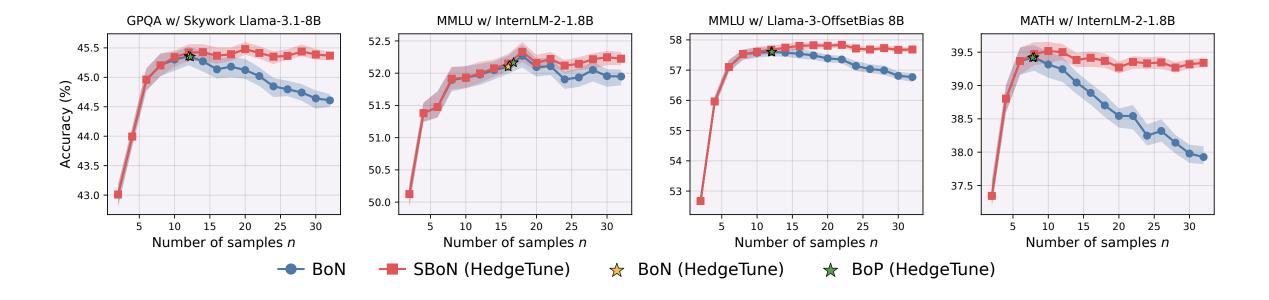
We require a small set of proxy and true reward pairs.

HedgeTune

Algorithm 4 HedgeTune: Parameter Optimization for Hedging

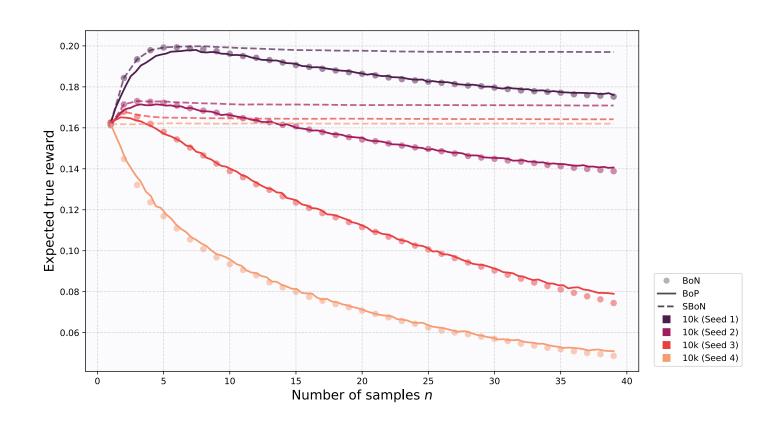
- 1: Inputs: Proxy and true rewards $\{s_{t,k}, r_{t,k}\}$ per prompt t; parameter domain Θ
- 2: Output: Optimal hedge parameter θ^*
- 3: STEP 1. For each prompt t, sort responses by their proxy scores and map their ranks to empirical quantiles $u_{t,k} \in (0,1)$.
- 4: STEP 2. Specify the score function $\psi(u, \theta)$ and density $p_{\theta}(u)$ according to the inference-time method (e.g., BoN, SBoN, BoP; see Appendix \overline{D}).
- 5: STEP 3. For a given t and $\theta \in \Theta$, define the residual $R_t(\theta) = \mathbb{E}_{u \sim p_{\theta}}[r_t(u) \psi(u, \theta)]$. This can be estimated from the empirical pairs $\{(u_{t,k}, r_t(u_{t,k}))\}$.
- 6: STEP 4. Find $\theta^* \in \Theta$ such that the average residual $\bar{R}(\theta^*) = \frac{1}{|T|} \sum_t \hat{R}_t(\theta) = 0$ via one-dimensional root-finding.

Hedging in verifiable setups



Result: Hedging mitigates reward hacking and achieves superior reward-distortion tradeoffs on standard verifiable benchmarks such as MMLU Pro and GPQA, even with large proxy rewards (8B)!

Hedging with human preferences



Result: Hedging mitigates reward hacking in a realistic RLHF setup

Conclusion

We offer a cheap and lightweight method to improve performance and mitigate reward hacking at inference.

We show that hedging is a promising framework to leverage proxy rewards and build safer, more reliable Al systems!