

DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks

Canyu Zhao, Yanlong Sun, Mingyu Liu, Huanyi Zheng, Muzhi Zhu, Zhiyue Zhao, Hao Chen, Tong He, Chunhua Shen

Vision Still Lacks a One-For-All Model

Unlike NLP, computer vision suffers from a representational chasm. Foundation models remain monomaniacs—excelling at one task but failing to transfer without massive redesign.

SAM (Segment Anything)

Segments brilliantly, but cannot predict depth.

DepthAnything

Excels at depth, but cannot segment.

The Central Question: Can a single, compact fully parameter-sharing model deliver competitive accuracy across diverse visual understanding tasks?

The Potential of Diffusion Models in Multiple Perceptual Tasks

Powerful Generative Priors

Repurposed for Understanding

Trained on billions of images, they learn rich geometry, context, and fine details.

By unifying the representations of different tasks into RGB space.

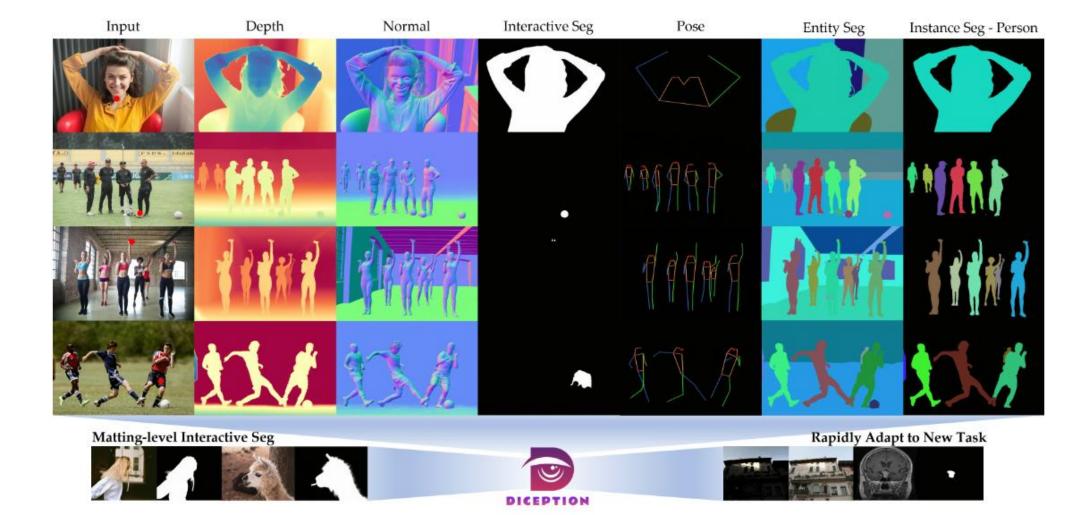
By repurposing pretrained diffusion weights, we can bypass the massive data and training costs of specialist models for multiple perception tasks.

DICEPTION

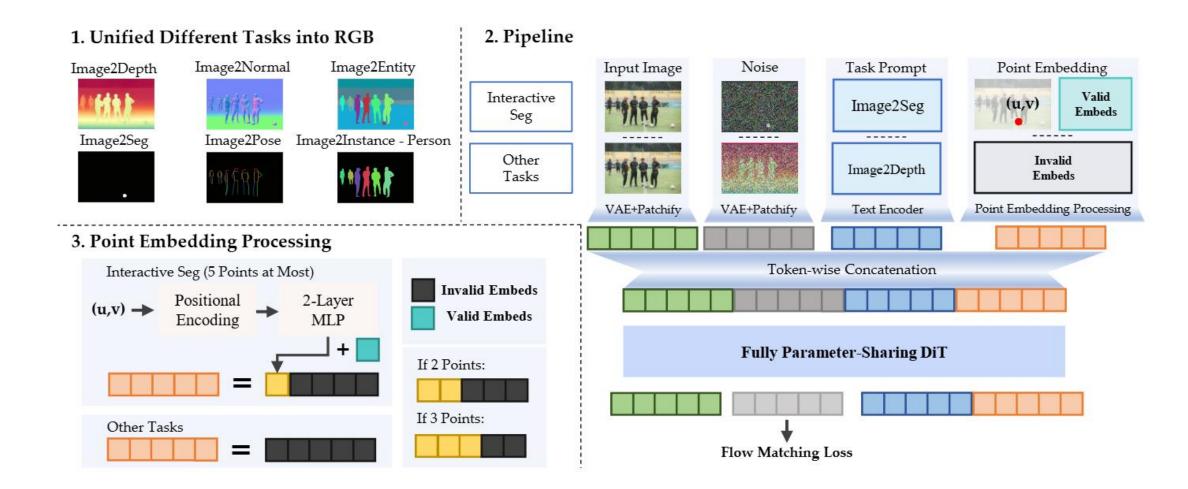
A single diffusion-based visual generalist model that handles six perception tasks—depth, normal, keypoint, and three types of segmentation—using one shared set of parameters and a unified RGB output space, all without task-specific modules. DICEPTION demonstrates strong scalability and adaptability.

What Can DICEPTION Do?

- With one single model, DICEPTION solves 6 perception tasks without relying on any task-specific modules, on par with SOTA.
- DICEPTION can quickly adapt to new tasks by fine-tuning less than 1% of its parameters on as few as 50 images.



Method



Results - Depth

Method	Training	KITTI	[33]	NYUv2	[77]	ScanNe	t [24]	DIODE [106]		ETH3D [95]	
Wicthod	Samples	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$
MiDaS [89]	2M	0.236	0.630	0.111	0.885	0.121	0.846	0.332	0.715	0.184	0.752
Omnidata [28]	12.2M	0.149	0.835	0.074	0.945	0.075	0.936	0.339	0.742	0.166	0.778
DPT-large [88]	1.4M	0.100	0.901	0.098	0.903	0.082	0.934	0.182	0.758	0.078	0.946
DepthAnything [†] [123]	63.5M	0.080	0.946	0.043	0.980	0.043	0.981	0.261	0.759	0.058	0.984
DepthAnything v2 [†] [124]	62.6M	0.080	0.943	0.043	0.979	0.042	0.979	0.321	0.758	0.066	0.983
Depth Pro [†] [7]	-	0.055	0.974	0.042	0.977	0.041	0.978	0.217	0.764	0.043	0.974
Metric3D v2 [†] [45]	16M	0.052	0.979	0.039	0.979	0.023	0.989	0.147	0.892	0.040	0.983
DiverseDepth [129]	320K	0.190	0.704	0.117	0.875	0.109	0.882	0.376	0.631	0.228	0.694
LeReS [130]	354K	0.149	0.784	0.090	0.916	0.091	0.917	0.271	0.766	0.171	0.777
HDN [132]	300K	0.115	0.867	0.069	0.948	0.080	0.939	0.246	0.780	0.121	0.833
GeoWizard [32]	280K	0.097	0.921	0.052	0.966	0.061	0.953	0.297	0.792	0.064	0.961
DepthFM [34]	63K	0.083	0.934	0.065	0.956	82	2	0.225	0.800	-	20
Marigold [†] [49]	74K	0.099	0.916	0.055	0.964	0.064	0.951	0.308	0.773	0.065	0.960
DMP Official [†] [56]	_	0.240	0.622	0.109	0.891	0.146	0.814	0.361	0.706	0.128	0.857
GeoWizard [†] [32]	280K	0.129	0.851	0.059	0.959	0.066	0.953	0.328	0.753	0.077	0.940
DepthFM [†] [34]	63K	0.174	0.718	0.082	0.932	0.095	0.903	0.334	0.729	0.101	0.902
Genpercept [†] [118]	90K	0.094	0.923	0.091	0.932	0.056	0.965	0.302	0.767	0.066	0.957
Painter [†] [113]	24K	0.324	0.393	0.046	0.979	0.083	0.927	0.342	0.534	0.203	0.644
Unified-IO [†] [71]	48K	0.188	0.699	0.059	0.970	0.063	0.965	0.369	0.708	0.103	0.906
$4M-XL^{\dagger}$ [75]	759M	0.105	0.896	0.068	0.951	0.065	0.955	0.331	0.734	0.070	0.953
OneDiffusion [†] [55]	500K	0.101	0.908	0.087	0.924	0.094	0.906	0.399	0.661	0.072	0.949
Ours-single [†]	500K	0.064	0.952	0.066	0.953	0.077	0.942	0.283	0.717	0.052	0.971
Ours [†]	500K	0.069	0.949	0.061	0.960	0.072	0.944	0.289	0.722	0.050	0.975

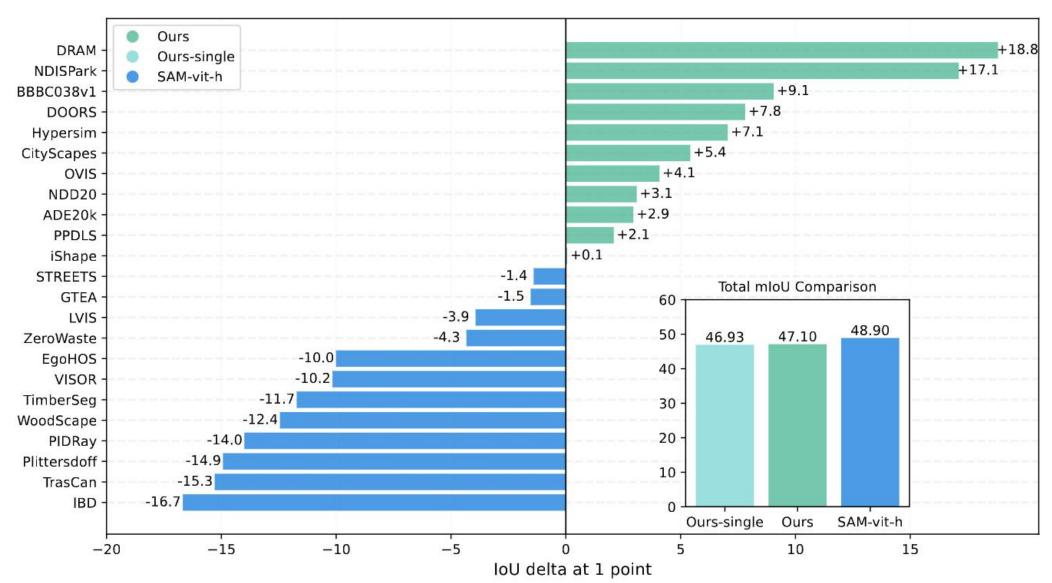
Results - Normal

Method	Training	NYUv2 [77]				ScanNet [24]					DIODE-indoor [106]					
Wichiod	Samples	mean↓	med↓	11.25°↑	22.5°↑	30°↑	mean↓	med↓	11.25°↑	22.5°↑	30°↑	mean↓	med↓	11.25°↑	22.5°↑	30°↑
DINSE [3]	160K	18.572	10.845	54.732	74.146	80.256	18.610	9.885	56.132	76.944	82.606	18.453	13.871	36.274	77.527	86.976
Geowizard [32]	280K	20.363	11.898	46.954	73.787	80.804	19.748	9.702	58.427	77.616	81.575	19.371	15.408	30.551	75.426	86.357
GenPercept [118]	90K	20.896	11.516	50.712	73.037	79.216	18.600	8.293	64.697	79.329	82.978	18.348	13.367	39.178	79.819	88.551
Marigold [49]	90K	20.864	11.134	50.457	73.003	79.332	18.463	8.442	64.727	79.559	83.199	16.671	12.084	45.776	82.076	89.879
StableNormal [127]	250K	19.707	10.527	53.042	75.889	81.723	17.248	8.057	66.655	81.134	84.632	13.701	9.460	63.447	86.309	92.107
Unified-IO [70]	210K	28.547	14.637	39.907	63.912	71.240	17.955	10.269	54.120	77.617	83.728	31.576	16.615	27.855	64.973	73.445
4M-XL [75]	759M	37.278	13.661	44.660	60.553	65.327	30.700	11.614	48.743	68.867	73.623	18.189	12.979	36.622	81.844	87.050
Ours-single	500K	18.292	10.145	52.693	76.966	83.041	18.807	10.327	52.919	75.152	82.968	16.229	11.012	50.137	83.573	88.972
Ours	500K	18.338	10.106	52.850	77.079	82.903	18.842	10.266	53.610	74.895	82.864	16.297	11.117	50.548	83.325	88.774

0.06%

Results - Interactive Segmentation

Data vs. SAM



TakeAways

Token-wise vs. Channel-wise Concatenation

Token-wise

- Faster convergence
- Higher accuracy
- No extra parameters
- Better leverages pretrained weights

Channel-wise

- Slower convergence
- Lower accuracy
- Requires extra MLP
- Does not fully leverage pretrained weights

Token-wise fusion preserves the pretrained prior most effectively.

Architecture Matters: DiT vs. U-Net

A U-Net baseline fails at multitasking due to information loss from downsampling and disrupted priors from extra convolutional layers.

DiT's pure transformer maintains full-resolution pathways and a global receptive field, leading to markedly superior geometry predictions.

U-Net Baseline

Fail even on simple two-task cases.

U-Net Baseline

Achieves superior results without architectural redesign.

0

The Effect of Classifier-Free Guidance

A mild CFG scale improves dense tasks like depth and normal estimation but has little effect on sparse tasks like segmentation and human keypose estimation.

CFG = 1

Softer, less defined

CFG = 2 (Optimal)

Sharper, clearer details

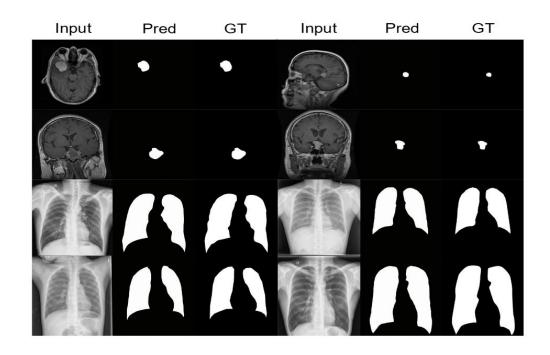
CFG > 3

Over-saturated, artifacts

Few - Shot Adaptation

Rapid adaptation to new tasks with minimal data and trainable parameters.

50 + 1%
Images Parameters



Efficiency: Few-Step Inference

Thanks to flow-matching's straight trajectory, DICEPTION supports few-step inference with minimal performance degradation on Dense Tasks such as Depth and Normal.

Ours (1-Step)

OneDiffusion (1-Step)

Depth AbsRel: FAIL

Depth AbsRel: 0.086

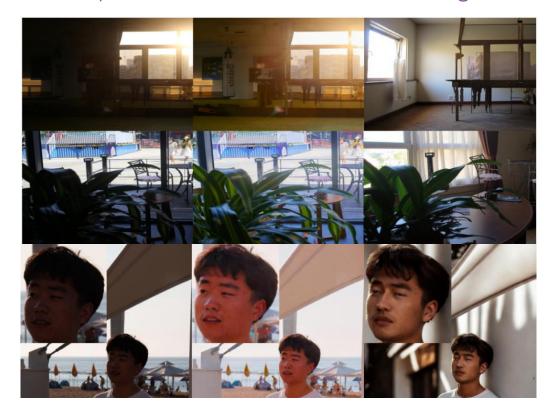
This built-in acceleration opens a realistic path to real-time deployment without extra distillation.

Method	Training	KITTI [33]		NYUv2 [77]		ScanNe	t [24]	DIODE [106]		ETH3D [95]		
	Samples	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	AbsRel↓	$\delta_1 \uparrow$	
28-step	500K	0.069	0.949	0.061	0.960	0.072	0.944	0.289	0.722	0.050	0.975	
14-step	500K	0.077	0.942	0.063	0.958	0.074	0.943	0.272	0.718	0.048	0.978	
7-step	500K	0.081	0.939	0.065	0.953	0.078	0.943	0.286	0.714	0.052	0.971	
3-step	500K	0.083	0.938	0.069	0.953	0.077	0.940	0.294	0.707	0.063	0.967	
1-step	500K	0.086	0.936	0.072	0.945	0.076	0.937	0.305	0.702	0.065	0.967	

Pixel-Aligned Training

Our perceptual settings enforce strict pixel correspondence, which significantly reduces generative artifacts in downstream applications.

It is important to emphasize that our goal is not to compare the lighting quality between methods, but rather to highlight our model's ability to significantly reduce generative artifacts and retain structural details. Input Ours IC-Light



Conclusion & Roadmap

Key Takeaways

- Diffusion priors can power strong multitask visual understanding.
- Five critical designs enable this: Token fusion, DiT, RGB unification, light CFG, and pixel-aligned training.
- Achieves SOTA-comparable performance without massive curated data.

Future Roadmap

- Scale data and model size for even better performance.
- Further compress inference steps for real-time use.
- Expand to more tasks for a truly universal visual foundation model.

Thank you

DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks

Canyu Zhao, Yanlong Sun, Mingyu Liu, Huanyi Zheng, Muzhi Zhu, Zhiyue Zhao, Hao Chen, Tong He, Chunhua Shen