Controlling the Flow: Stability and Convergence for Stochastic Gradient Descent with Decaying Regularization

Sebastian Kassing, Simon Weißmann, Leif Döring

The Thirty-Ninth Annual Conference on Neural Information Processing Systems

Smooth & Convex Optimization:

Task: Minimize a differentiable function $f: \mathcal{X} \to \mathbb{R}$, where $(\mathcal{X}, \langle \cdot, \cdot \rangle_{\mathcal{X}})$ is a separable real Hilbert space.

Assumptions:

- f is convex,
- ▶ f is L-smooth, i.e. $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$ for all $x, y \in \mathbb{R}^d$ and
- $ightharpoonup \operatorname{argmin}_{x \in \mathcal{X}} f(x) \neq \emptyset.$

Minimum-norm solution: We denote by $x_* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)$ the minimum-norm solution, i.e. a minimum with $||x_*||_{\mathcal{X}} \leq ||\hat{x}||_{\mathcal{X}}$ for all $\hat{x} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)$.

Regularized Stochastic Gradient Descent

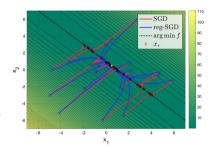
At iteration we have access to an unbiased estimator

$$\widehat{\nabla f(X_{k-1})} = \nabla f(X_{k-1}) + D_k$$

Assumptions:

- ▶ Unbiased: $\mathbb{E}[D_k \mid \mathcal{F}_{k-1}] = 0$
- ► ABC-condition:

$$\mathbb{E}[\|D_k\|^2 \mid \mathcal{F}_{k-1}] \leq A(f(X_{k-1}) - f(X_*)) + B\|\nabla f(X_{k-1})\|^2 + C$$



Stochastic Gradient Descent:

$$X_k = X_{k-1} - \gamma_k (\nabla f(X_{k-1}) + D_k),$$

Regularized Stochastic Gradient Descent:

$$X_k = X_{k-1} - \gamma_k \left(\nabla f(X_{k-1}) + \lambda_k X_{k-1} + D_k \right),$$

where $\gamma_k, \lambda_k \to 0$.

General last iterate <u>almost sure</u> convergence

Strategy: Balance the error $\|X_n - x_*\| \le \|X_n - x_{\lambda_n}\| + \|x_{\lambda_n} - x_*\|$, where x_{λ} denotes the unique minimum of the strongly-convex function $f_{\lambda}(x) := f(x) + \frac{\lambda}{2} \|x\|^2$.

Theorem 2.1

Let $(\gamma_n)_{n\in\mathbb{N}_0}$ and $(\lambda_n)_{n\in\mathbb{N}_0}$ adapted (possibly random) sequences that are uniformly bounded from above. Assume that almost surely $\lambda_n\to 0$ (decreasingly) and that

$$\sum_{n\in\mathbb{N}}\gamma_n\lambda_n=\infty,\quad \sum_{n\in\mathbb{N}}\gamma_n^2<\infty,\quad \text{ and }\quad \sum_{n\in\mathbb{N}}\gamma_n\lambda_n\big(\|x_*\|_{\mathcal{X}}^2-\|x_{\lambda_n}\|_{\mathcal{X}}^2\big)<\infty.$$

Then $\lim_{n\to\infty} ||X_n - x_*|| = 0$ almost surely.

4

General last iterate \underline{L}^2 -convergence

Strategy: Balance the error $\|X_n - x_*\| \le \|X_n - x_{\lambda_n}\| + \|x_{\lambda_n} - x_*\|$, where x_{λ} denotes the unique minimum of the strongly-convex function $f_{\lambda}(x) := f(x) + \frac{\lambda}{2} \|x\|^2$.

Theorem 2.2

Let $(\gamma_n)_{n\in\mathbb{N}_0}$ and $(\lambda_n)_{n\in\mathbb{N}_0}$ be deterministic sequences of positive reals. Assume that $\lambda_n\to 0$ (decreasingly) and that

$$\sum_{n\in\mathbb{N}}\gamma_n\lambda_n=\infty,\quad \gamma_n=o(\lambda_n),\quad \text{ and }\quad \lambda_n-\lambda_{n-1}=o(\gamma_n\lambda_n).$$

Then $\lim_{n\to\infty} \mathbb{E}[\|X_n - X_*\|^2] = 0$.

5

L²-convergence <u>rates</u>

Choose

$$\gamma_n = C_{\gamma}(n+1)^{-q}$$
 and $\lambda_n = C_{\lambda}(n+1)^{-p}$.

Theorem 2.3

Assume that $p \in (0, \frac{1}{2}]$ and $q \in (p, 1-p]$ and, if q = 1-p, additionally assume that $2C_{\lambda}C_{\gamma} > 1-q$. Then it holds that $\lim_{k \to \infty} \mathbb{E}[\|X_n - X_*\|^2] = 0$ and

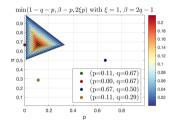
(i)
$$\mathbb{E}[f(X_n) - f(X_*)] \in \mathcal{O}(n^{-\min(p,q-p)}),$$

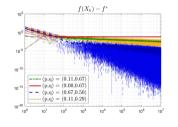
(ii)
$$\mathbb{E}[\|X_n - x_{\lambda_n}\|^2] \in \mathcal{O}(n^{-\min(1-q-p,q-2p)})$$
 for $p \in (0,\frac{1}{3})$ and $q \in (2p,1-p)$.

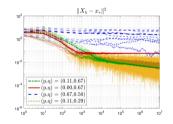
Optimizing the rates yield: $\mathbb{E}[f(X_n) - f(X_*)] \in \mathcal{O}(n^{-\frac{1}{3}})$ for $p = \frac{1}{3}$ and $q = \frac{2}{3}$.

Toy example

The PL-inequality implies $||x_{\lambda} - x_{*}|| \lesssim \lambda^{1/4}$, see Maulen-Soto, Fadili, Attouch (2024).







- $f(X) = \frac{1}{2}(X_1 + X_2 1)^2$
- \triangleright $D_k \sim \mathcal{N}(0, 0.01)$