

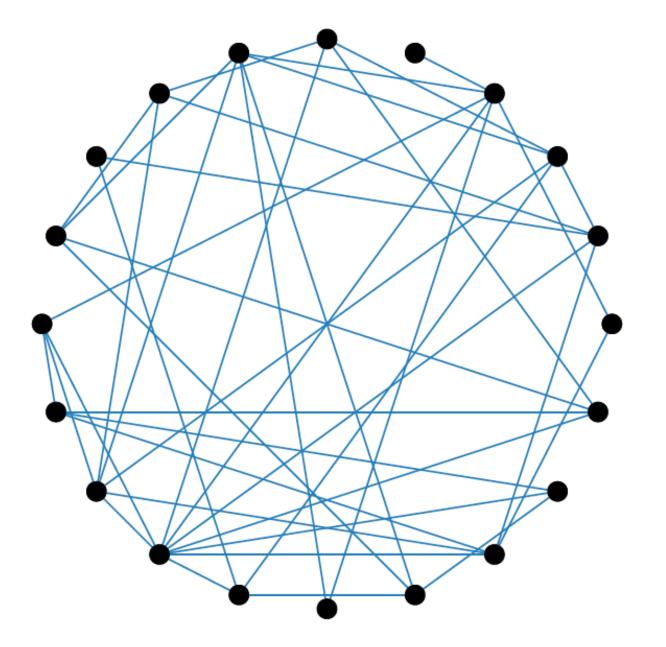
Nonlinear Laplacians

Tunable principal component analysis under directional prior information

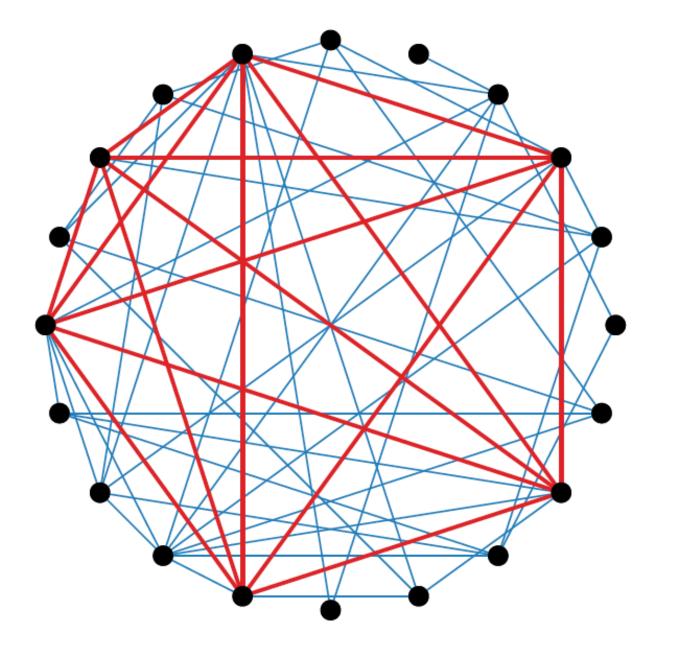
Yuxin Ma, Dmitriy (Tim) Kunisky

Department of Applied Mathematics and Statistics, Johns Hopkins University {yma93, kunisky}@jhu.edu

• Draw G an Erdős–Rényi graph with n nodes. (Each edge independently with probability 1/2).



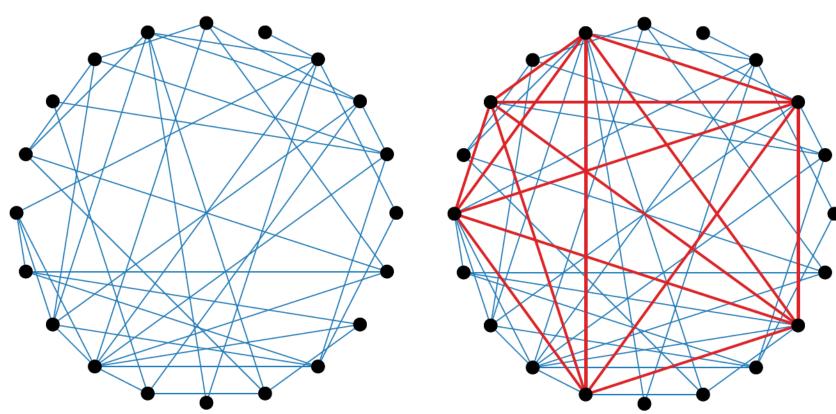
- Draw G an Erdős–Rényi graph with n nodes. (Each edge independently with probability 1/2).
- Choose a subset of vertices S and add a clique (complete subgraph) on S.



- Draw G an Erdős–Rényi graph with n nodes. (Each edge independently with probability 1/2).
- Choose a subset of vertices S and add a clique (complete subgraph) on S.

Want to either

- **Detection:** decide whether $S = \emptyset$. (Whether a clique is planted).
- Estimation: produce $\hat{S} \approx S$. (Recover the clique).



Take Y the $\{\pm 1\}$ -valued adjacency matrix of graph G, and perform PCA on it.

Take Y the $\{\pm 1\}$ -valued adjacency matrix of graph G, and perform PCA on it.

• $\mathbf{Y} pprox \mathbf{1}_S \mathbf{1}_S^ op$ + (i.i.d. noise matrix)

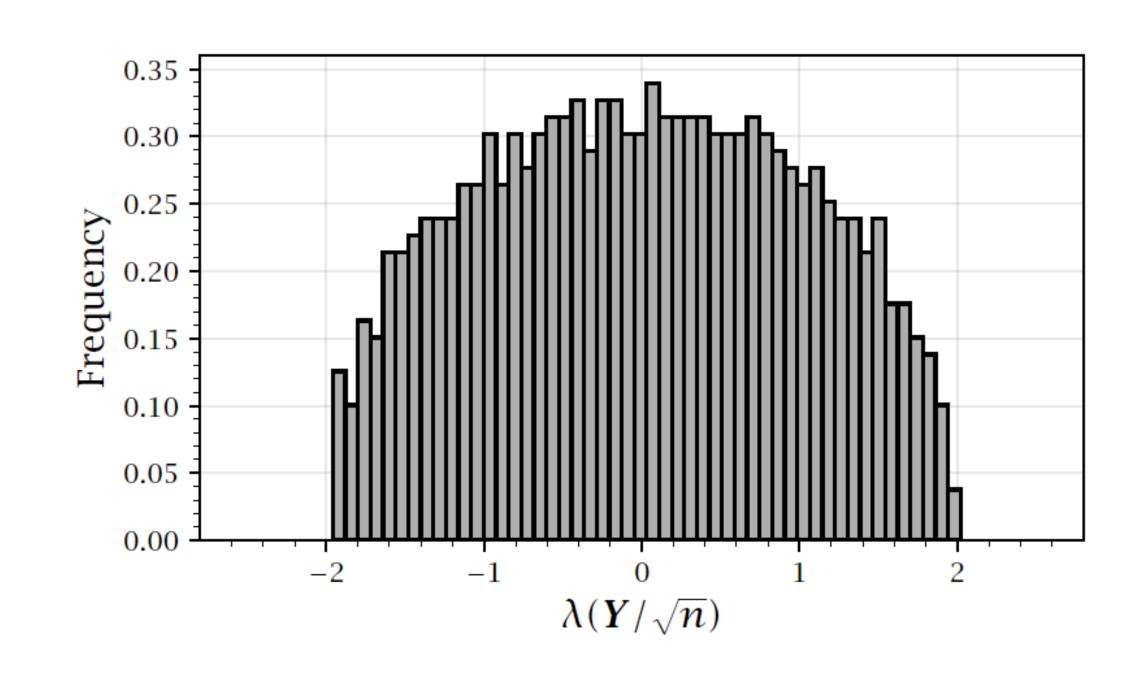
Take Y the $\{\pm 1\}$ -valued adjacency matrix of graph G, and perform PCA on it.

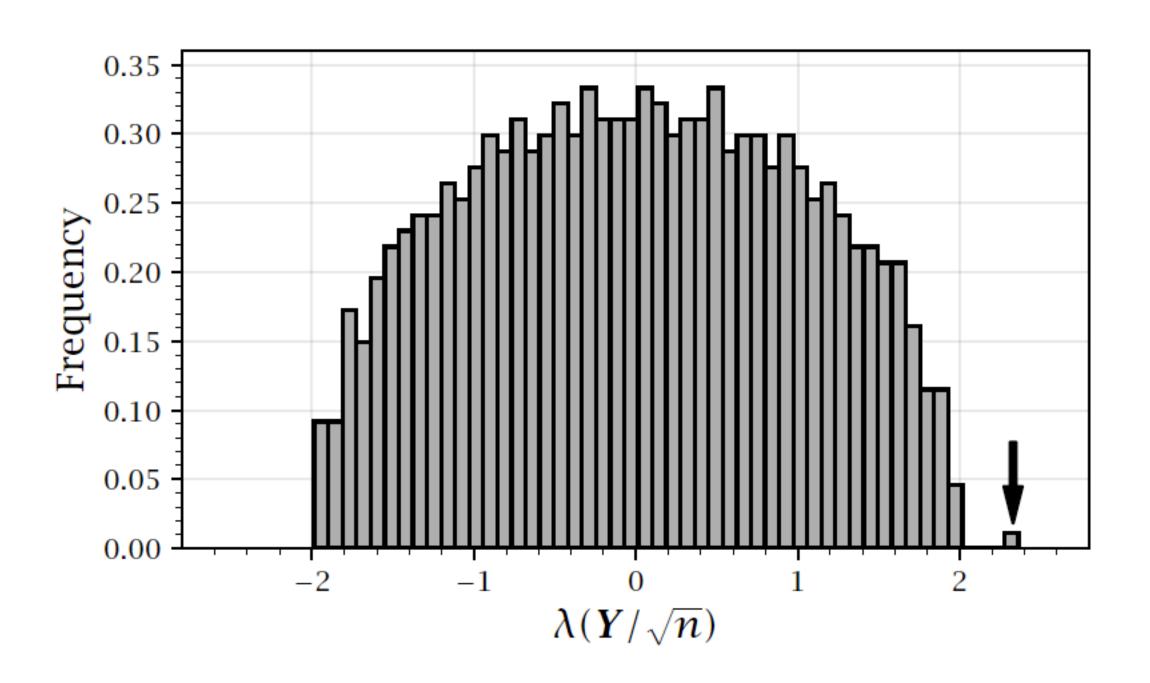
• $\mathbf{Y} pprox \mathbf{1}_S \mathbf{1}_S^ op +$ (i.i.d. noise matrix)



Take Y the $\{\pm 1\}$ -valued adjacency matrix of graph G, and perform PCA on it.

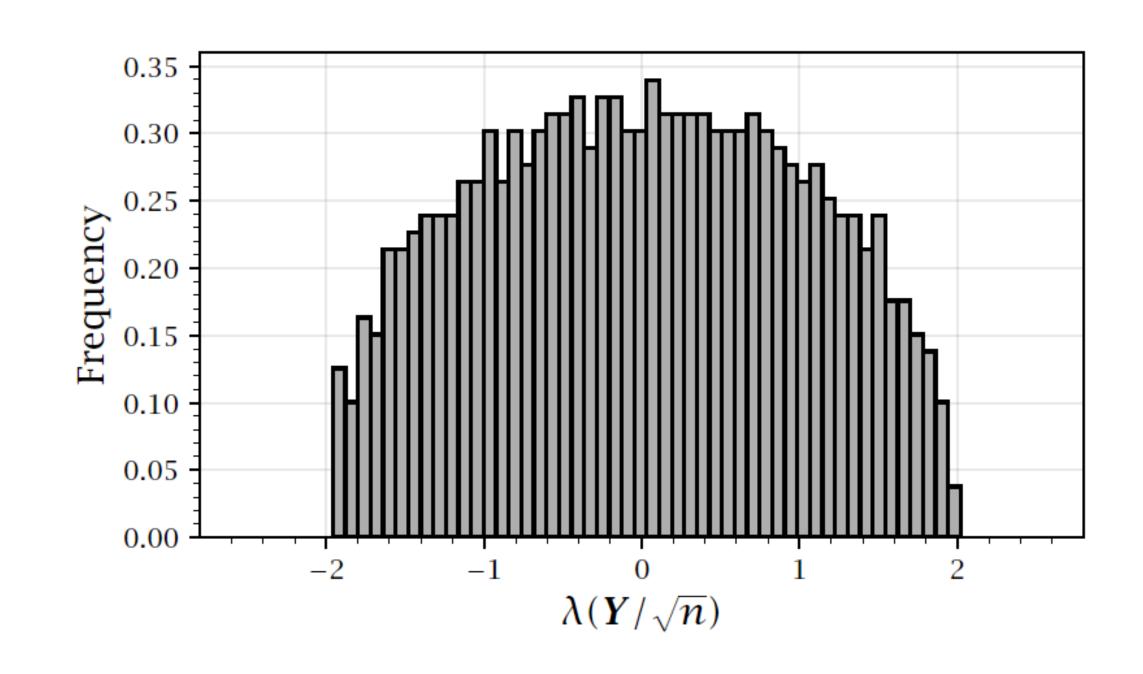
• $\mathbf{Y} pprox \mathbf{1}_S \mathbf{1}_S^ op +$ (i.i.d. noise matrix)

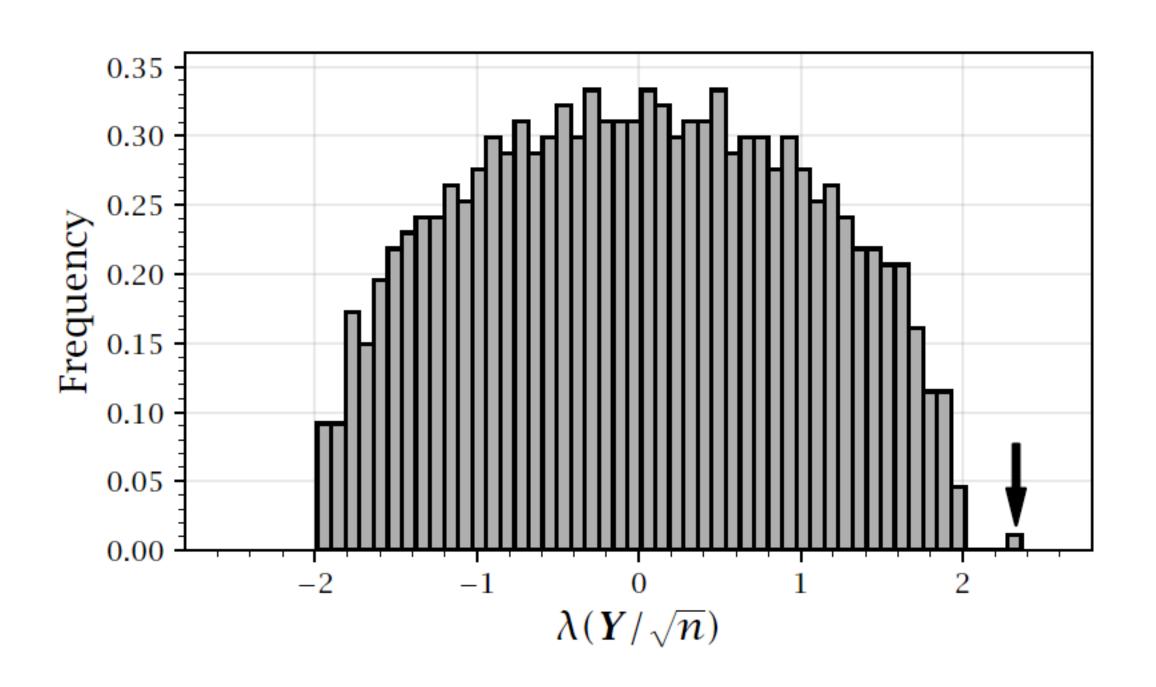




Take Y the $\{\pm 1\}$ -valued adjacency matrix of graph G, and perform PCA on it.

- $\mathbf{Y} \approx \mathbf{1}_S \mathbf{1}_S^{\top} + \text{(i.i.d. noise matrix)}$
- Outlier eigenvalue $\iff |S| > \sqrt{n}$





- Detection: decide there's a planted clique if $\lambda_1\left(\frac{\mathbf{Y}}{\sqrt{n}}\right)>2+\varepsilon$ Estimation: $v_1\left(\frac{\mathbf{Y}}{\sqrt{n}}\right)\approx\frac{\mathbf{1}_S}{\|\mathbf{1}_S\|}$

Non-trivial detection and estimation $\iff |S| > \sqrt{n}$

The naive spectral algorithm discards crucial prior information: it works for any rank-one estimation $\mathbf{Y} = xx^\top + (\text{i.i.d. noise matrix})$

The naive spectral algorithm discards crucial prior information: it works for any rank-one estimation $\mathbf{Y} = xx^\top + (\text{i.i.d. noise matrix})$

- In Planted Clique, the signal $\mathbf{1}_S$ is **biased** towards $\mathbf{1}$.
- Nodes inside the clique have higher degrees.

The naive spectral algorithm discards crucial prior information: it works for any rank-one estimation $\mathbf{Y} = xx^\top + (\text{i.i.d. noise matrix})$

- In Planted Clique, the signal $\mathbf{1}_S$ is **biased** towards $\mathbf{1}$.
- Nodes inside the clique have higher degrees.

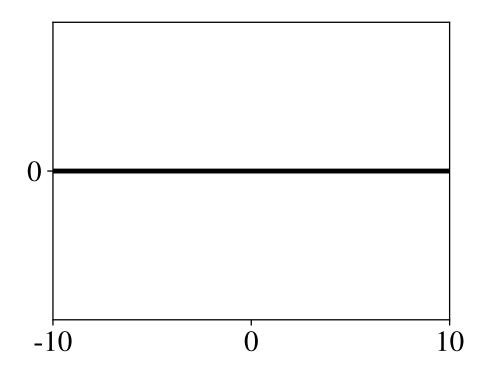
Idea: Use λ_1 , v_1 of the Nonlinear Laplacian matrix

$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

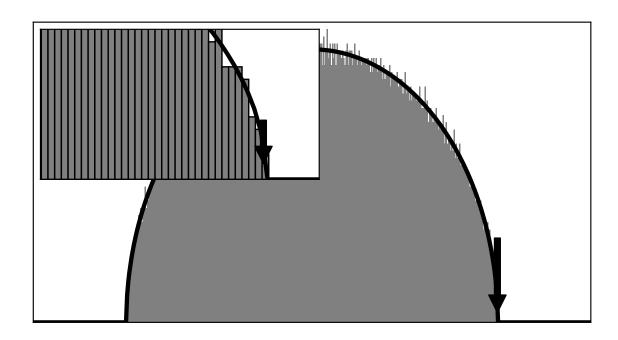
- ullet $\hat{\mathbf{Y}}\mathbf{1}$ captures the degree information.
- $\sigma: \mathbb{R} \to \mathbb{R}$ bounded and monotone, applied entry-wise.

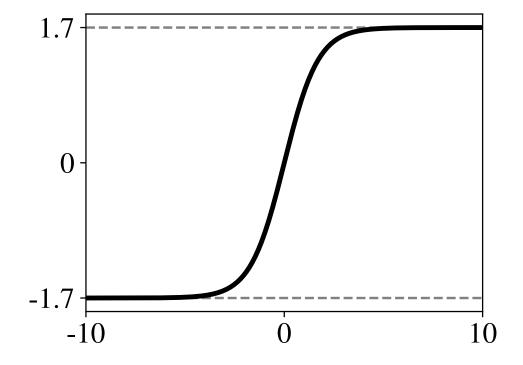
$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

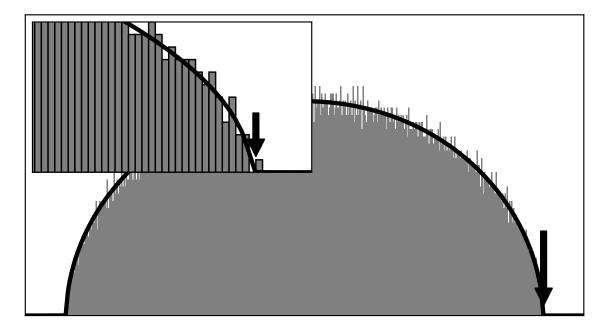
Nonlinearity σ



Eigenvalues: |S| = 0

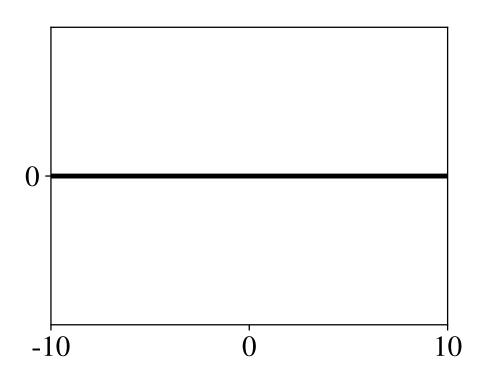




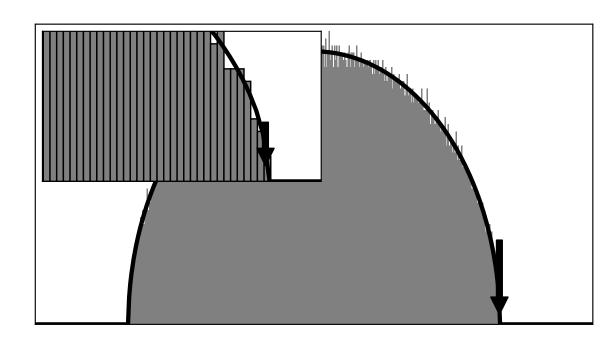


$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

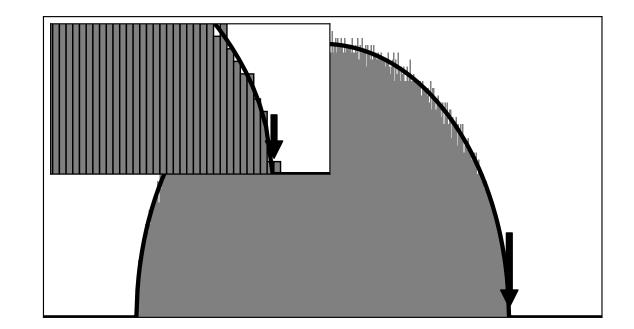
Nonlinearity σ

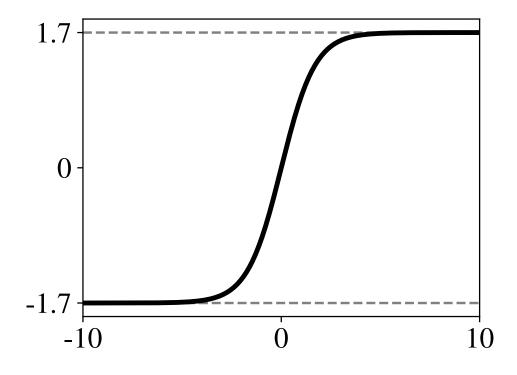


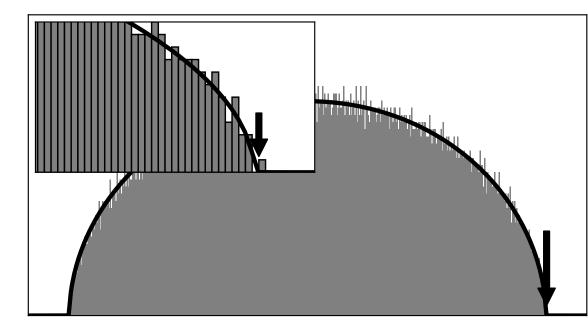
Eigenvalues: |S| = 0 $|S| = 0.9\sqrt{n}$

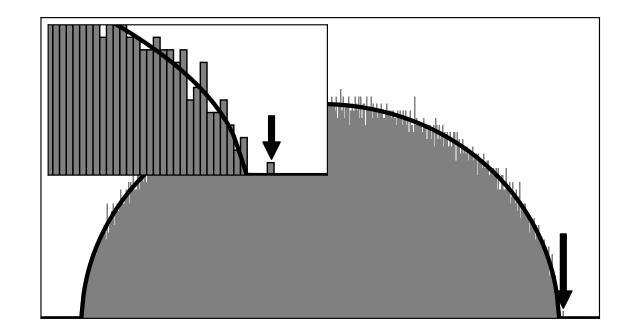


$$|S| = 0.9\sqrt{n}$$



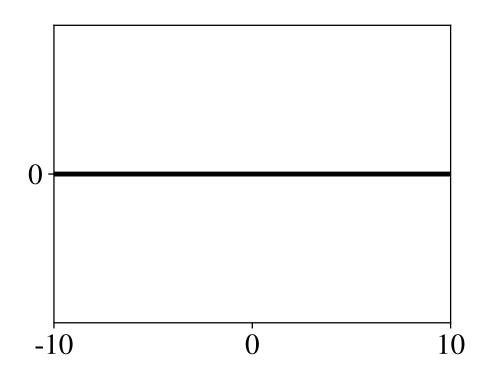




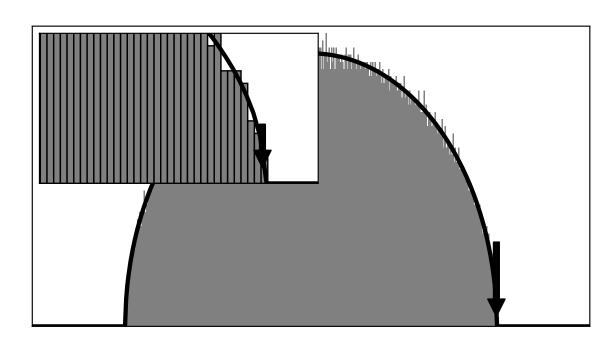


$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

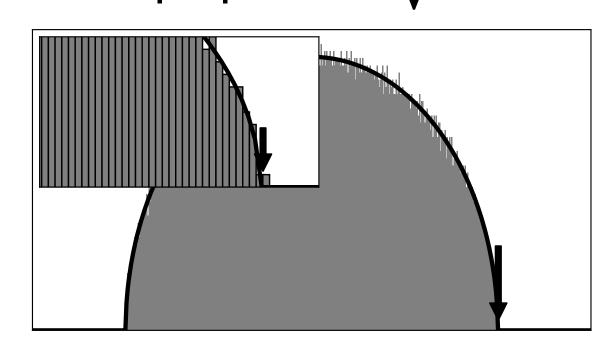
Nonlinearity σ



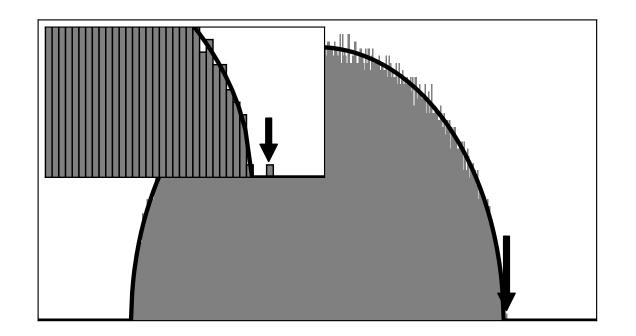
Eigenvalues: |S| = 0 $|S| = 0.9\sqrt{n}$

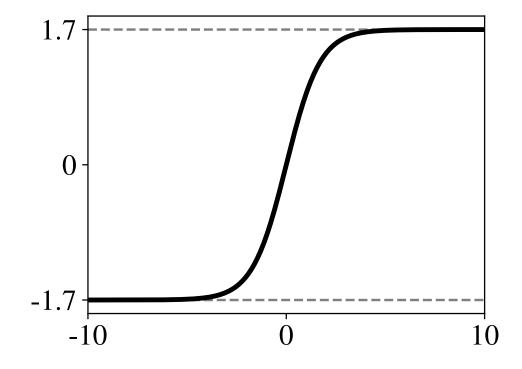


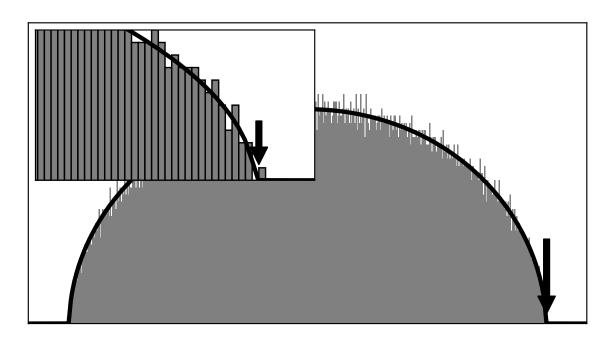
$$|S| = 0.9\sqrt{n}$$

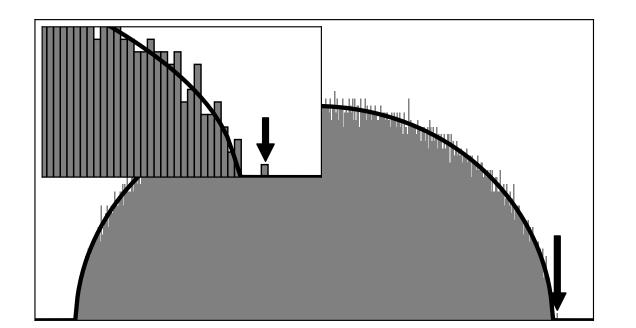


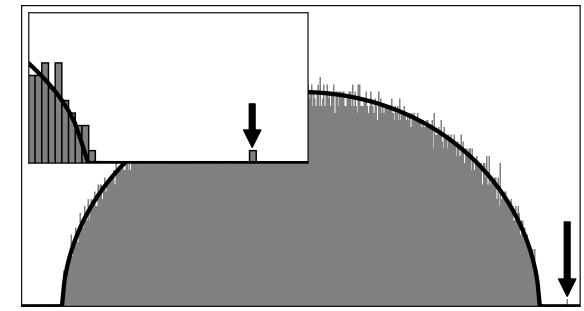
$$|S| = 1.2\sqrt{n}$$



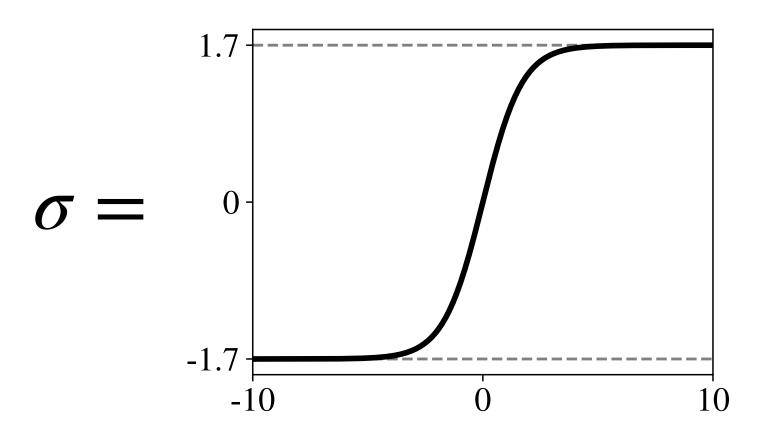








$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$



Non-trivial detection and estimation $\iff |S| > 0.76\sqrt{n}$

$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

A simple, tunable family of spectral algorithms that combines spectral and degree information.

$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

A simple, tunable family of spectral algorithms that combines spectral and degree information.

- For any clique size $<\sqrt{n}$, neither the spectral information alone nor the degree information alone cannot detect.
- By combining them in this simple way, we achieve detection for any clique size $> 0.76 \sqrt{n}$.

$$\mathbf{L}_{\sigma}(\mathbf{Y}) = \hat{\mathbf{Y}} + \operatorname{diag}(\sigma(\hat{\mathbf{Y}}\mathbf{1})), \quad \hat{\mathbf{Y}} = \frac{\mathbf{Y}}{\sqrt{n}}$$

A simple, tunable family of spectral algorithms that combines spectral and degree information.

- For any clique size $<\sqrt{n}$, neither the spectral information alone nor the degree information alone cannot detect.
- By combining them in this simple way, we achieve detection for any clique size $> 0.76 \sqrt{n}$.

Poster on Thursday 4 Dec, 4:30 - 7:30 pm PST.