PhysX-3D: Physical-Grounded 3D Asset Generation

Ziang Cao¹, Zhaoxi Chen¹, Liang Pan², Ziwei Liu¹

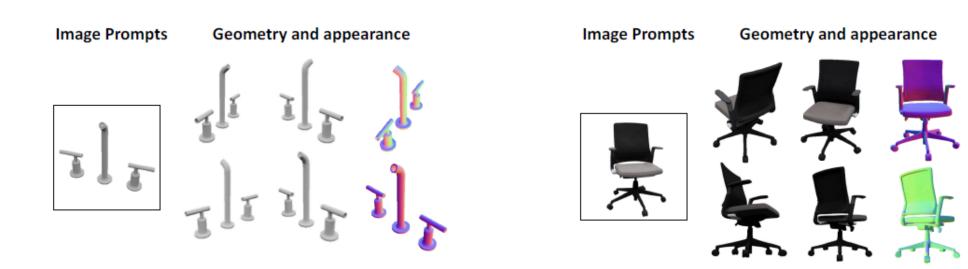
¹Nanyang Technological University ²Shanghai Al Lab

Motivation

Absence of Physical-Grounded 3D Datasets.

Most existing 3D datasets primarily provide geometry and texture information, but they rarely include **physical properties** such as **absolute scale**, **material**, **affordance**, **kinematics**, and **function description**, thereby constraining the development of generative models.

Dataset	# Objs	Part anno	Physical Dim	Material	Affordance	Kinematic	Description	Year
ShapeNet [3]	51K	×	×	Х	×	×	×	2015
PartNet [17]	26K	✓	X	X	X	X	X	2019
PartNet-Mobility [26]	2.7K	✓	X	X	X	✓	X	2020
GAPartNet [9]	1.1K	✓	×	×	X	✓	X	2022
ABO 6	7.9K	×	✓	Obj-level	×	×	Obj-level	2022
OmniObject3D [25]	6K	×	×	X	×	×	X	2023
Objaverse 8	818K	×	×	X	×	×	×	2023
PhysXNet (ours)	26K	✓	1	Part-level	/	/	Part-level	2025
PhysXNet-XL (ours)	6M	✓	✓	Part-level	✓	✓	Part-level	2025

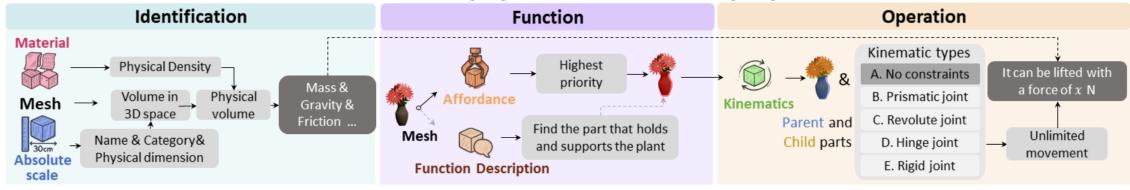


Limitations in current 3D generative methods.

Existing 3D generation primarily emphasizes geometries and textures while **neglecting physical-grounded modeling**, hampering their real-world application in physical domains like simulation and embodied AI.

Contribution

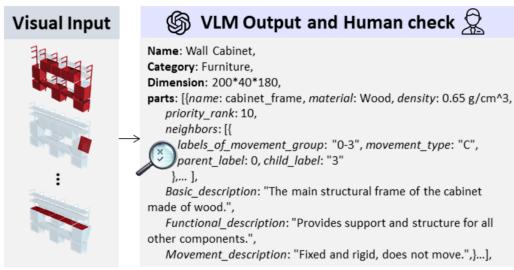
- We pioneer the **first end-to-end paradigm** for physical-grounded 3D asset generation, advancing the research frontier in physical-grounded content creation and unlocking new possibilities for downstream applications in simulation.
- We build the **first physical-grounded 3D dataset**, **PhysXNet**, and propose a human-in-the loop annotation pipeline to convert existing geometry-focused datasets into fine-grained physics-annotated 3D datasets efficiently and robustly. In addition, we present an extended version, **PhysXNet-XL**, which includes over 6 million annotated 3D objects generated through procedural methods.
- We design a dual-branch feed-forward framework, **PhysXGen**. It can model the latent interdependencies between structural and physical features to achieve plausible physical predictions while maintaining the native geometry quality.

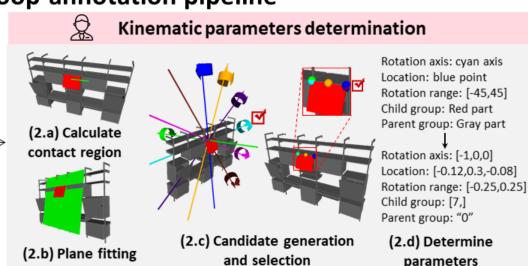


Definition of physical properties

Definition of physical and semantic properties

- **Identification** determining the basic nature of the object absolute scaling and material (material name, Young's modulus, Poisson's ratio, and density)
- **Function** understanding its potential applications functional affordance analysis and function descriptions (basic, functional, and kinematic descriptions).
- Operation detailed usage methodologies kinematic parameter


HITL annotation pipeline



Human-in-the-loop annotation pipeline

• Preliminary Data Acquisition:

- Utilize GPT-40 to obtain the basic information
- Human Check

Kinematic Parameter Determination

- Calculate contact region
- Plane fitting
- Candidate generation and selection
- Determine kinematic parameters by human

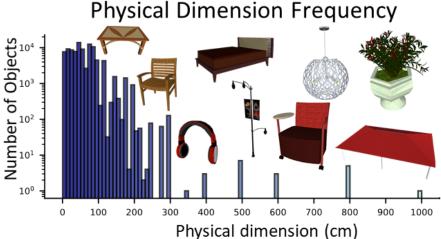
PhysXNet&PhysXNet-XL

Part Number Occurrence Frequency

Physical properties

Physical dimension: 120×70×70 cm





Description Dir: [0,1,0] Pos: [-0.01,-0.27,0.2] user's left arm

We propose PhysXNet&PhysXNet-XL – the first comprehensive physical 3D dataset containing over 26K&6M richly annotated 3D objects

PhysXGen

Find the part that

Physical 3D assets in PhyXPartnet

provides access

to the cabinet

interior

Physical Latent Generation

Sparse

Flow

Transformer

Noise

Physical 3D Assets VAE Encoding & Decoding

Voxelize

Multiview

Average

VAE Decoder Latent Diffusion Pre-proc. Physical Physical Voxelize Sparse Physical Category: Bathroom/Kitchen Fixture, Sparse Meshes VAE Sparse VAE Property Flow Encoder retrieval Decoder Transformer Noise Wood RFS **Physical Latents** Condition Pre-proc. 3DGS s Visual feat. Rotation: [0,180] Pretrain DINOv2 Pretrain Dir: [0,1,0] Sparse Pretrain Sparse Loc: [0.5,-0.46, 0.37]

VAE

Decoder

PhysXGen features a two-stage architecture comprising:

VAE

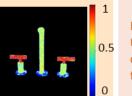
Encoder

- physical 3D VAE framework for latent space learning
- physics-aware diffusion process for structured latent generation.

Structured Latents

Experimental results

Image Prompts


Geometry and appearance

Absolute Scale

Physical dimension: 27.51×19.8×6.76 cm

Affordance

Physical properties

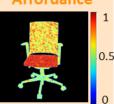
Function Description

Find the part that Used to turn water on/off or adjust temperature.

Kinematic type: rotation Range: [-92.3,87]

Dir: [0.18,0.736,0.02] Pos: [-0.56,-0.04,-0.073]

Kinematics


Absolute Scale

Physical dimension: 98.92×69.2×64.3 cm

Material

Affordance

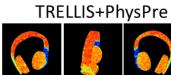
Kinematic type: rotation Range: [-190.8,143.1] Dir: [0.02,0.864,-0.03] Pos: [0.032,-0.11,0.11]

Function Description

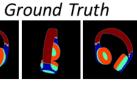
Find the mesh fabric backrest surface of the chair

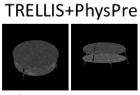
Kinematics

Experimental results



Prompts





Property

PhysXGen

Find the part that serves as the main surface for placing items

TRELLIS+PhysPre

Physical Dimension: 72.3×71.5×97.1 cm

PhysXGen

Physical Dimension: 61.2×62.4×88.9 cm

Ground Truth

Physical Dimension: 60×60×90 cm

Absolute Scale

TRELLIS+PhysPre

PhysXGen

PhysXGen

Density 7.48 g/cm^3 0.583 g/cm³ 3.448 g/cm³

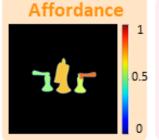
Type: E Range: [-174.6, -169.2] Dir: [-0.42,-0.53,0.26] Pos: [0.32,0.16,0.52]

Range: [-159.8, 160.8] Dir: [0.13,0.05,0.86]

Child part Parent part

Experimental results

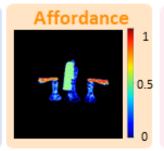
Image prompts


Trellis+PartField+GPT-4o

PhysXGen

Absolute Scale

Physical dimension: 20×15×12 cm



Material

Absolute Scale

Physical dimension: 24.31×18.19×14.7 cm

Material

Affordance

0.

Function Description

Find the part that delivers water from the valve system to the sink

Affordance

Function Description

Find the part that delivers water from the valve system to the sink

Kinematics

Kinematic type: rotation Range: [-180,180]

Dir: [1,0,0] Pos: [0,0,0]

Parent part

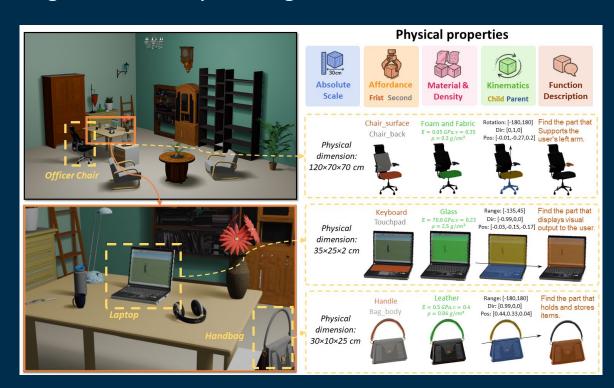
Ran Dir:

Kinematics

Kinematic type: rotation
Range: [-87.3,10.2]
Dir: [-0.01,0.941,0.05]
Pos: [-0.011,0.013,0.001]



PhysX-3D: Physical-Grounded 3D Asset Generation


Ziang Cao¹, Zhaoxi Chen¹, Liang Pan², Ziwei Liu¹

¹Nanyang Technological University, ²Shanghai Al Lab

Home page:

https://physx-3d.github.io/

