TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets

Yuzhe Yang^{1*} Yifei Zhang^{2*} Minghao Wu^{2*} Kaidi Zhang¹ Yunmiao Zhang² Honghai Yu^{2,3} Yan Hu¹ Benyou Wang¹

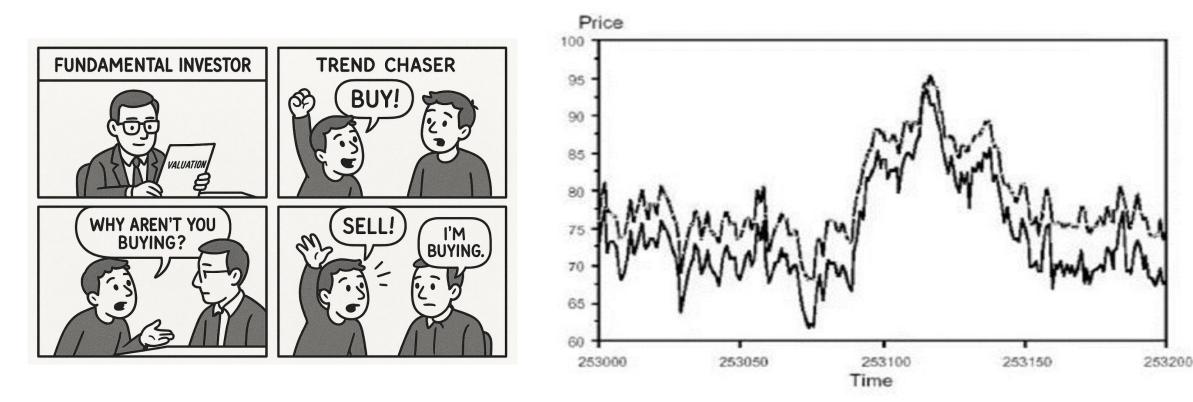
¹The Chinese University of Hong Kong, Shenzhen ²Nanjing University ³Jiangsu Key Laboratory of Digital Finance

Presenter: Yifei Zhang

Project Page: https://freedomintelligence.github.io/TwinMarket/

Motivation

- Realistically simulate complex human behaviors
- Individuals aggregate into social systems for behavioral research



Santa Fe Institute Artificial Stock Market^[1]

Limitations of Traditional ABMs

1. Oversimplify human behavior

2. Struggle to capture complexity & irrationality

3. Hard to trace causality

LLMs as Simulators?

- Benefits of LLM as Simulator^[2,3]: rich behaviors, nuanced interactions, reasoning ability
- Limitations of LLM-simulated Agent^[4,5,6]: Fixed Prompts, no interactions, limited scale

System	Agent Customization	Social Interactions	Simulation Scale	
CompeteAI	Simple predefined prompts	Competition between 2 restaurants	Less than 100 agents	
EconAgent	Uses demographic info	No interaction considered	100 agents	
ASFM	Two fixed strategies	No interaction considered	Not disclosed	
TwinMarket	Highly customizable agents	Rich multi-agent interactions	1000 agents, scalable	

^[2] Yu, Yangyang, et al. "Fincon: A synthesized llm multi-agent system with conceptual verbal reinforcement for enhanced financial decision making." Advances in Neural Information Processing Systems 37 (2024): 137010-137045.

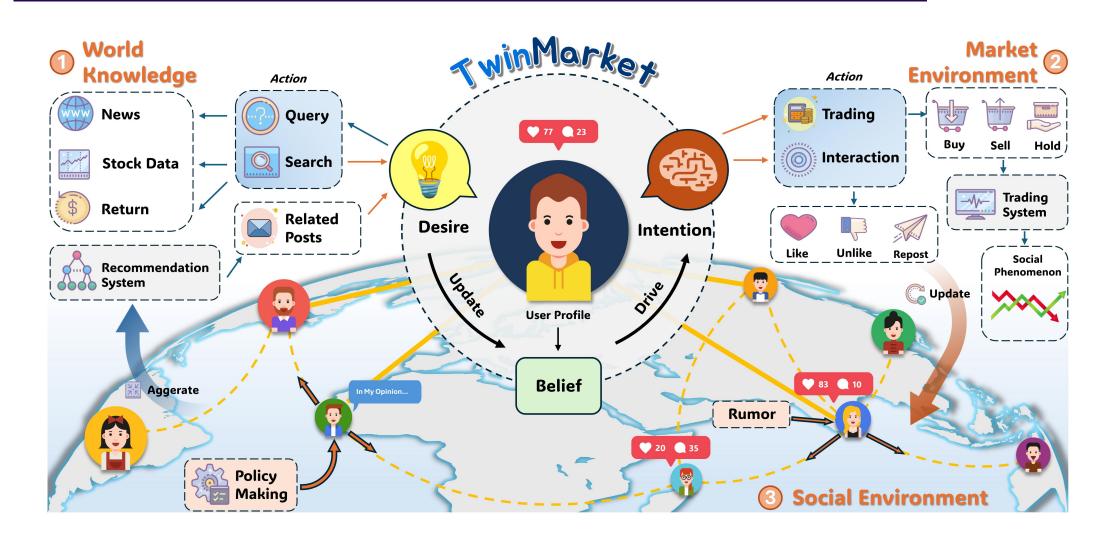
^[3] Eisfeldt, Andrea L., and Gregor Schubert. AI and Finance. No. w33076. National Bureau of Economic Research, 2024.

^[4] Zhao, Qinlin, et al. "Competeai: Understanding the competition dynamics in large language model-based agents." arXiv preprint arXiv:2310.17512 (2023).

^[5] Li, Nian, et al. "Econagent: large language model-empowered agents for simulating macroeconomic activities." arXiv preprint arXiv:2310.10436 (2023).

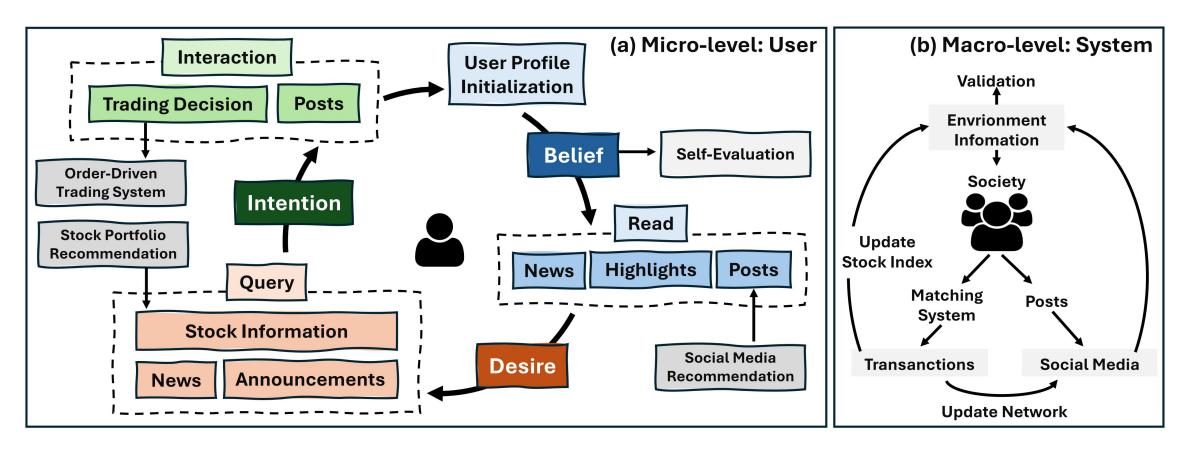
^[6] Gao, Shen, et al. "Simulating financial market via large language model based agents." arXiv preprint arXiv:2406.19966 (2024).

TwinMarket Framework



TwinMarket: A loop of agents, environments, interactions, and emergence

TwinMarket Simulation Workflow



The simulation workflow driven by the **Belief-Desire-Intention** framework. The **micro-level** simulation focuses on modeling individual user behavior, while the **macro-level** simulation addresses the dynamics of the social media platform and trading system.

Micro-Level Simulation: BDI-Framework

The agent' state and actions are governed by three core components:

- Belief: The agent's dynamic perception of the environment, defined as $B_t = f(S_t, H_t, N_t)$
 - $S_t \in \mathbb{R}^5$: A belief vector encoding five dimensions (economic fundamentals, market valuation, short-term trends, market sentiment, self-assessment).
 - \rightarrow H_t : Historical trading records and market data.
 - N_t : Current news and social media information.
- lacksquare Desire: The agent's goal generation process, defined as $D_t = g(B_t, Q_t)$
 - \triangleright B_t : The agent's current belief state.
 - \triangleright Q_t : Information retrieval queries.
- Intention: The agent's committed action selection, defined as $I_t = h(B_t, D_t, C_t) \in \mathcal{A}$
 - \triangleright D_t : The current goal set derived from beliefs (e.g., analyze specific industries).
 - \succ C_t : Current constraints (e.g., capital, position limits, preferences).
 - \nearrow A: The set of all possible actions, including trading actions {buy, sell, hold} and social actions {like, unlike, repost}.

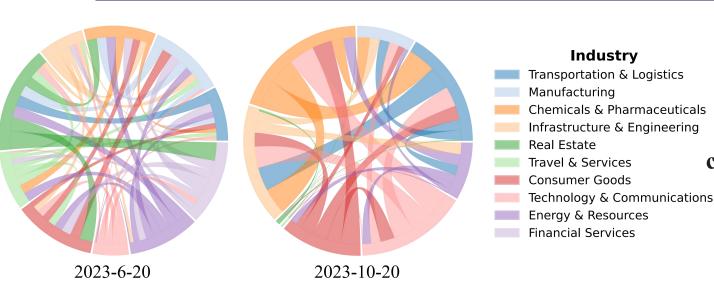
Micro-Level Simulation: BDI-Framework

Daily Simulation Loop: For the daily simulation loop, the agent's state transition is defined as $Agent_{t+1} = BDI(Agent_t, Environment_t)$.

This BDI cycle follows a sequential, six-step execution order:

- Belief Formation : $B_t = f(S_t, H_t, N_t)$ --- The agent perceives the environment.
- 2 Desire Generation : $D_t = g(B_t, Q_t)$ The agent forms goals based on its beliefs.
- Intention Planning: $I_t = h(B_t, D_t, C_t)$ The agent commits to specific actions.
- 4 Action Execution: $Action_t = execute(I_t)$ The agent performs the action.
- \bigcirc Environment Response: $Feedback_t = Environment(Action_t)$ --- The environment provides feedback.
- 6 Belief Update: $B_{t+1} = Update(B_t, I_t, Feedback_t)$ --- The agent updates its beliefs for the next cycle.

Macro-Level Simulation: Dynamic Social Network

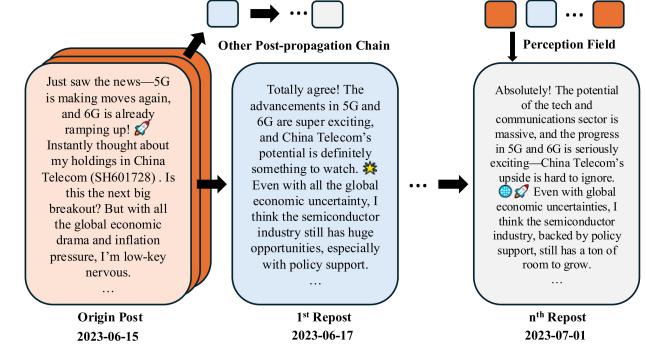


Constructing the Dynamic Social Network:

The social network evolves over time, reflecting changing user trading patterns and preferences.

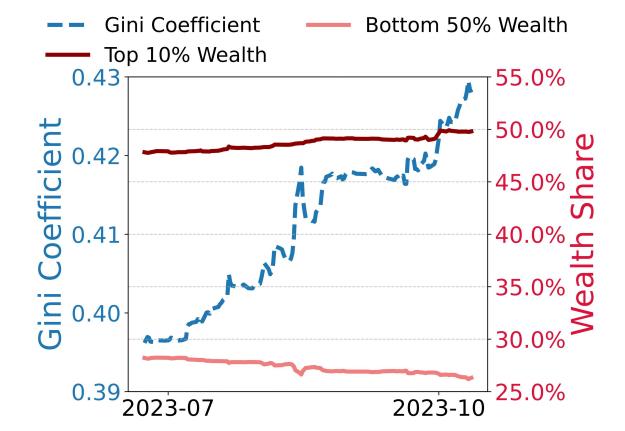
Information Aggregation Mechanism:

Information propagates through the network, with influential posts reaching a wider audience.



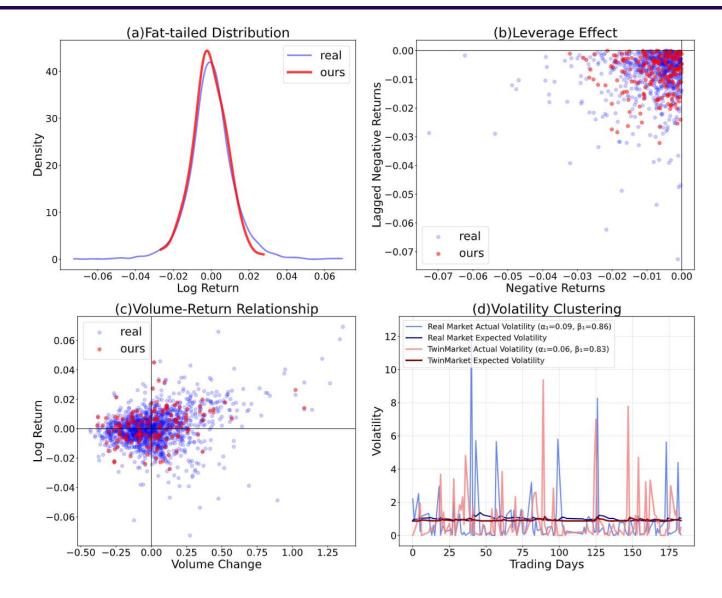
Micro-Level Validation

- Inequality in the stock market: Rising Gini coefficient, indicating widening wealth inequality.
- Trading Activity and Returns: Top 10% vs Bottom 50%



Performance	Avg. Turnover	Avg. Return		
Top 10%	4.02%	6.65%		
Bottom 50%	7.03%	-10.52%		

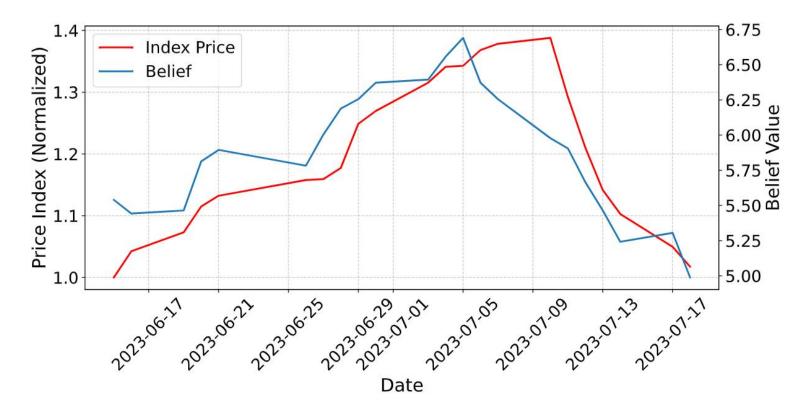
Macro-Level Validation



Simulation (red/ours) vs. Real (blue/real) markets: The stylized facts emerge naturally

Micro-Level Emergence – Bubbles rise and fall

- Belief: Calculate evolving understanding of the market environment for each agent after trading
- Optimism drives increasing price



The rise and fall of market bubbles: People's beliefs and prices share similar trends

Micro-Level Emergence – Bubbles rise and fall

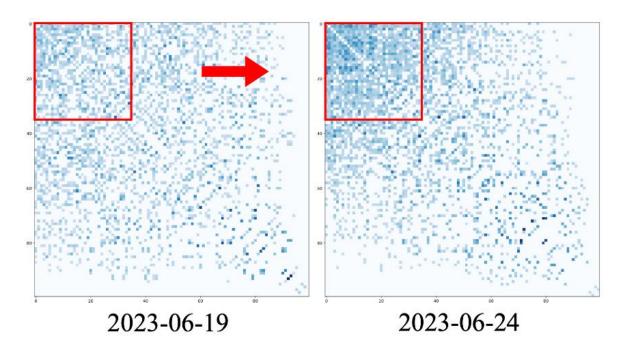
Rising price creates a positive feedback loop

Micro-Level Emergence – Bubbles rise and fall

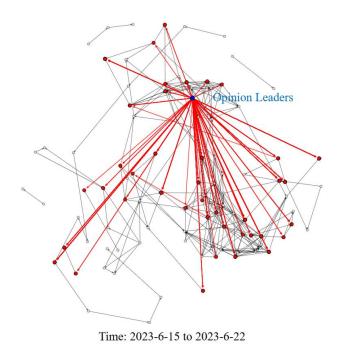
Market corrections

Macro-Level Emergence – Information Propagation

- Setting: Select important news and push it to high-centrality users & Introduce rumors
- Social Network Polarization
- Emergence of opinion leaders



Adjacency matrix view: Rumors lead to tighter behavioral clustering



Emergent Opinion Leaders (the center node)

Ablation Study

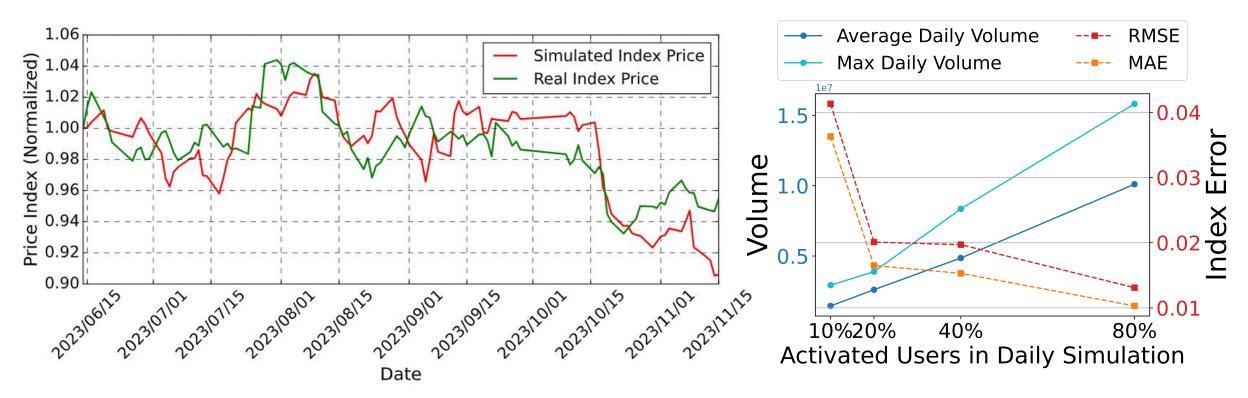
- w/o BDI: remove the belief-desire-intention module, making agents purely reactive
- w/o Hetero. : eliminate agent heterogeneity by assigning uniform strategies and biases

Table 5: Ablation study on the effects of the BDI framework and agent heterogeneity. ↑: higher is better, ↓: lower is better. Corr., RMSE, and MAE are computed on the daily normalized index price series between simulated outcomes and real-world data.

Model Variant	RMSE ↓	MAE ↓	Corr. ↑	Kurtosis †	Lev. Effect ↑	GARCH a ↑	GARCH $\beta \uparrow$
TwinMarket	0.02	0.02	0.77	5.24	0.11	0.06	0.83
TwinMarket w/o BDI	0.07	0.05	0.34	4.25	0.05	0.03	0.76
TwinMarket w/o Hetero.	0.09	0.08	-0.61	3.58	0.13	0.05	0.85

Scalability

- Scaled to 1000 agents
- Simulated index closely tracks real-world index (SSE 50)



1000-agent simulation (red) closely tracks real-world (green) trend

Scaling Law: Performance ∝ Volume

Contribution & Conclusion

- Novel Framework for Social Simulation: Integrating LLM agents with BDI cognitive architecture, market dynamics, and explicit social interaction for financial simulation.
- Proof of Concept on Social Emergence: Demonstrates how social influence and information flow drive emergent macro-phenomena (bubbles, polarization, turbulence) from micro-behaviors.
- First Scaled Financial Simulation: Replicates real-world stylized facts and scales to 1000+ agents, demonstrating both realism and scalability.

Thank You!