

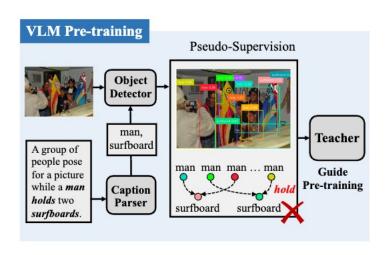
Interaction-Centric Knowledge Infusion and Transfer for Open Vocabulary Scene Graph Generation

Lin Li^{1,2}, Chuhan Zhang^{1,2}, Dong Zhang^{1,2}, Chong Sun³, Chen Li³, Long Chen^{1†}

²ACCESS

³Tencent

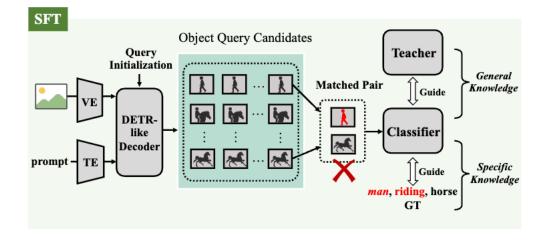
Definition:


Given an image I, Scene Graph Generation (SGG) aims to construct a structured semantic graph G = (V, E). Each node $v_i \in V$ is defined by its bounding box (bbox) and category, while each edge $e_{ij} \in E$ represents the relationship between v_i and v_j .

In **open-vocabulary settings**, the label set C for nodes and edges is divided into base classes C_B and novel classes C_N , such that $C_B \cup C_N = C$ and $C_B \cap C_N = \emptyset$. C_B contains **seen** classes during training, while C_N includes **unseen** classes that the model is expected to generalize to during inference.

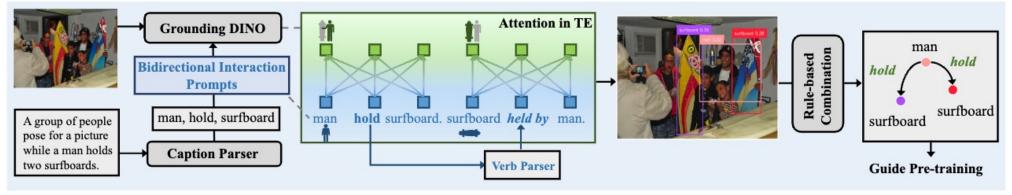
Challenge

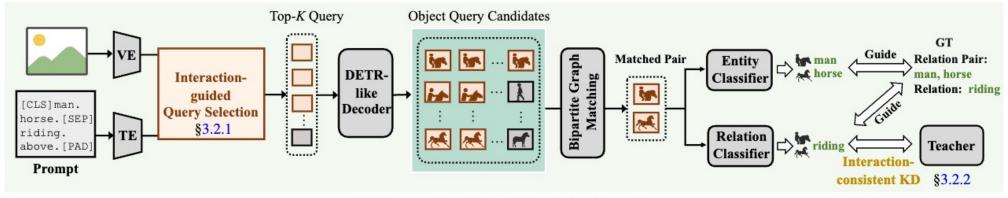
> Knowledge Infusion


Using solely object categories for detection causes ambiguity in associating object pairs

> Knowledge Transfer

Vast object query candidates make misaligned non-interacting objects with interacting training target





Interaction-centric end-to-end OVSGG framework

(a) Interaction-Centric Knowledge Infusion

(b) Interaction-Centric Knowledge Transfer

- Bidirectional interaction prompt is designed to guide the object localization.
- Combining two perspectives for each interaction triplet: one from the subject's viewpoint and another from the object's perspective via counteraction prompts.

Benefits:

- Modeling Context Information
- Enhancing Object Role Awareness

Question: Given the action 'ride', please generate its corresponding counter-action.

Answer: 'be ridden by'.

Question: Given the action 'eat', please generate its

corresponding counter-action.

Answer: 'be eaten by'.

Question: Given the action '{relation}', please gener-

ate its corresponding counter-action.

Answer:

Counter-action generation prompts

Interaction-Centric Knowledge Transfer

Interaction-Guided Query Selection instills an interaction prior into the two-step query generation process to reduce non-interacting candidates.

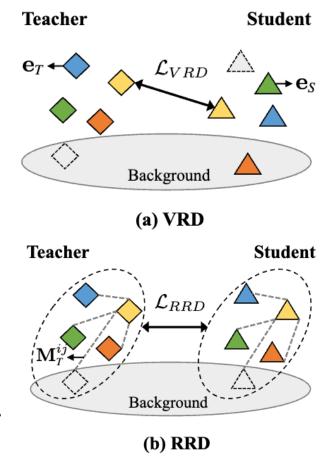
Step I identifies the most relevant visual tokens likely to participate in object interactions.

$$s_i = \left(\max(\mathbf{v}_i \mathbf{T}_o^{\top})\right)^{\gamma} \cdot \left(\max(\mathbf{v}_i \mathbf{T}_r^{\top})\right)^{1-\gamma},$$

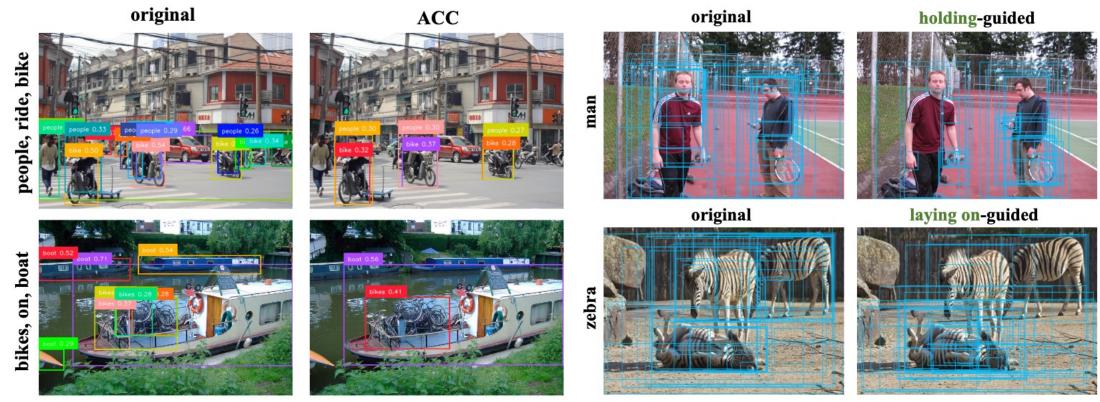
Step II models interaction semantics by integrating relational context into object tokens.

$$s_i^{in} = \max(\mathbf{v}_i \mathbf{T}_{in}^{\top}).$$

Interaction-Centric Knowledge Transfer

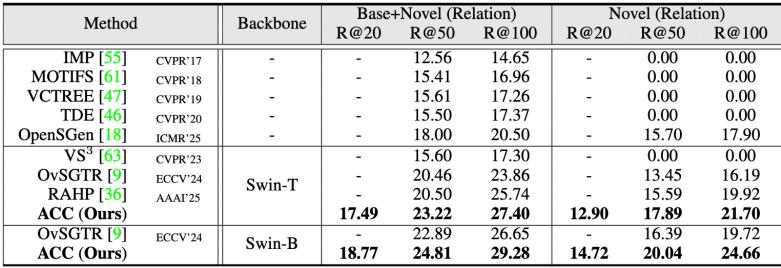

Interaction-Consistent Knowledge Distillation

Visual-concept retention distillation: ensures that the student's edge features remain point-wise consistent with the teacher's semantic space for negative samples.


$$\mathcal{L}_{VRD} = rac{1}{|\mathcal{N}|} \sum_{\mathbf{e} \in \mathcal{N}} \lVert \mathbf{e}_{\mathit{S}} - \mathbf{e}_{\mathit{T}}
Vert_1,$$

Relative-interaction retention distillation: explicitly models inter-pair relativity by aligning the structure similarity of triplet embeddings between the teacher and student models.

$$\mathbf{M}_T^{ij} = \frac{\mathbf{e}_T^i \cdot \mathbf{e}_T^{j\top}}{\|\mathbf{e}_T^i \cdot \mathbf{e}_T^{j\top}\|_2}, \quad \mathbf{M}_S^{ij} = \frac{\mathbf{e}_S^i \cdot \mathbf{e}_S^{j\top}}{\|\mathbf{e}_S^i \cdot \mathbf{e}_S^{j\top}\|_2}. \qquad \mathcal{L}_{RRD} = \frac{1}{|\mathcal{N}|^2} \|\mathbf{M}_S - \mathbf{M}_T\|_F^2.$$



Pseudo supervision generation

Interaction-guided query selection

Experimental results of OvR-SGG setting on VG test set.

Method	Backbone	Joint Base+Novel			Novel (Obj)			Novel (Rel)		
		R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100
IMP [55] CVPR'17	-	=	0.77	0.94	-	0.00	0.00	-	0.00	0.00
MOTIFS [61] CVPR'18	-	-	1.00	1.12	-	0.00	0.00	-	0.00	0.00
VCTREE [47] CVPR'19	-	-	1.04	1.17	-	0.00	0.00	-	0.00	0.00
TDE [46] CVPR'20	-	-	1.00	1.15	-	0.00	0.00	-	0.00	0.00
VS ³ [63] CVPR'23		-	5.88	7.20	-	0.00	0.00	-	0.00	0.00
OvSGTR [9] ECCV'24	Swin-T	10.02	13.50	16.37	10.56	14.32	17.48	7.09	9.19	11.18
ACC (Ours)		12.61	17.43	21.27	12.48	17.16	21.10	11.38	15.90	19.46
OvSGTR [9] ECCV'24	Swin-R	12.37	17.14	21.03	12.63	17.58	21.70	10.56	14.62	18.22
ACC (Ours)		13.50	18.88	23.19	13.46	18.84	23.29	12.37	17.50	21.73

Experimental results of OvD+R-SGG setting on VG test set.

Our code is available at

https://github.com/HKUST-LongGroup/ACC

ENDLESS GRATITUDE