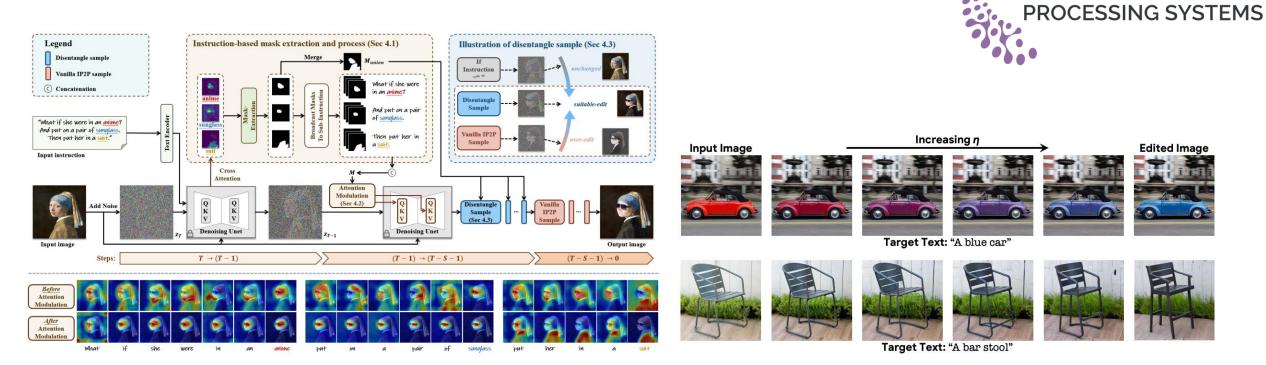

AutoEdit: Automatic Hyperparameter Tuning for Image Editing

Chau Pham, Quan Dao, Mahesh Bhosale, Yunjie Tian Dimitris Metaxas, David Doermann

1. Text-based Image editing problem



Two editing criteria:

- Background preservation
- Prompt Alignment

2. Common image editing methods

Attention control editing

Blending in latent space

NEURAL INFORMATION

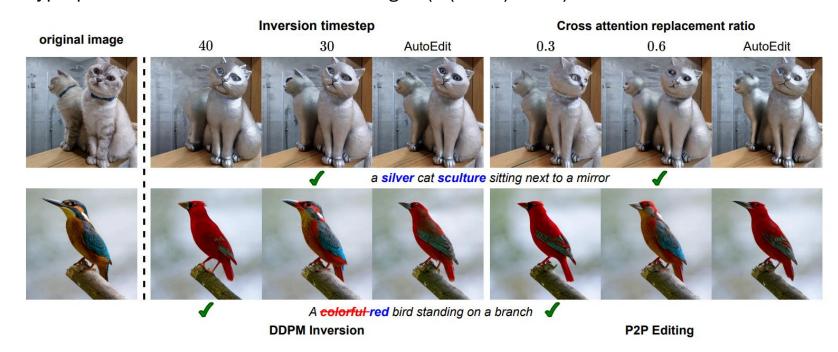
Common approach:

- Inversion the image by applying an inversion method.
- Denoising: At each step of the denoising process, we need to choose the editing operation, decided by the hyperparameter.

Huang, Yuzhou, et al. "Smartedit: Exploring complex instruction-based image editing with multimodal large language models." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2024.

Kawar, Bahjat, et al. "Imagic: Text-based real image editing with diffusion models." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2023.

3. Hyperparameter tuning for Image Editing

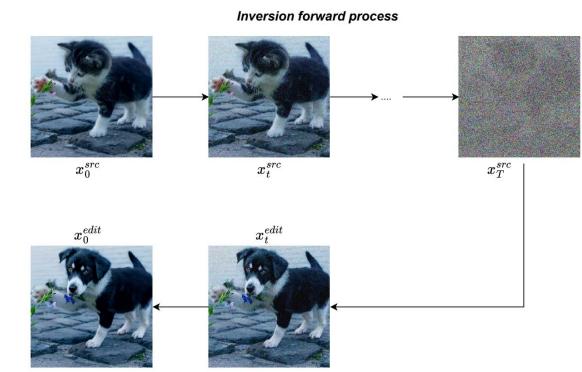

In Image Editing task, the programmers need to specify the hyperparameter:

- Inversion timestep
- Cross/Self attention ratio.
- Attention reweighting.
- Blending coefficient,...

The hyperparameters depend on the editing method. Each image has a different value of optimal hyperparameters.

Trial-and-error: If each hyperparameter can takes K values -> K times denoising to search the optimal value (O(TK) NFEs).

If there are N hyperparameters -> K^N times denoising -> (O(TK^N) NFEs)



4. Contribution

- 1. Discover the critical time-consuming of hyperparameter selection in trial-anderror methods.
- 2. Reformulating the hyperparameter searching in image editing as the RL problem -> applying PPO to train the RL.
- 3. The policy model can find near-optimal value of hyperparameters.

5. RL environment definition

RL is inserted in the denoising backward process:

- State: Noisy sample x_t . Initialize state at x_T
- Action: Parameterize the hyperparameter as the stepwise action H_t
- Reward: Consist of background preservation and prompt alignment.
- Termination: Finish after T steps.

Denoising backward process

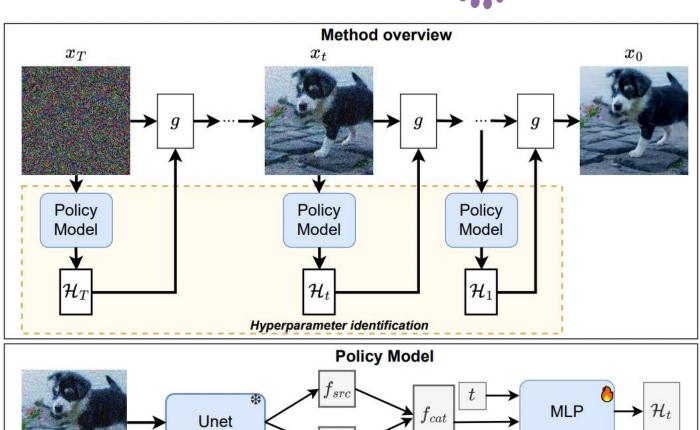
6. AutoEdit Design

Reward function:

- Prompt alignment:
 - CLIP score of the edited region.
 - LLM judgement.
- Background preservation:
 - MSE score of unedited region.

Follow RL training for LLM, we conduct 2 stages:

- Policy initialization (SFT training)
- RL optimization.

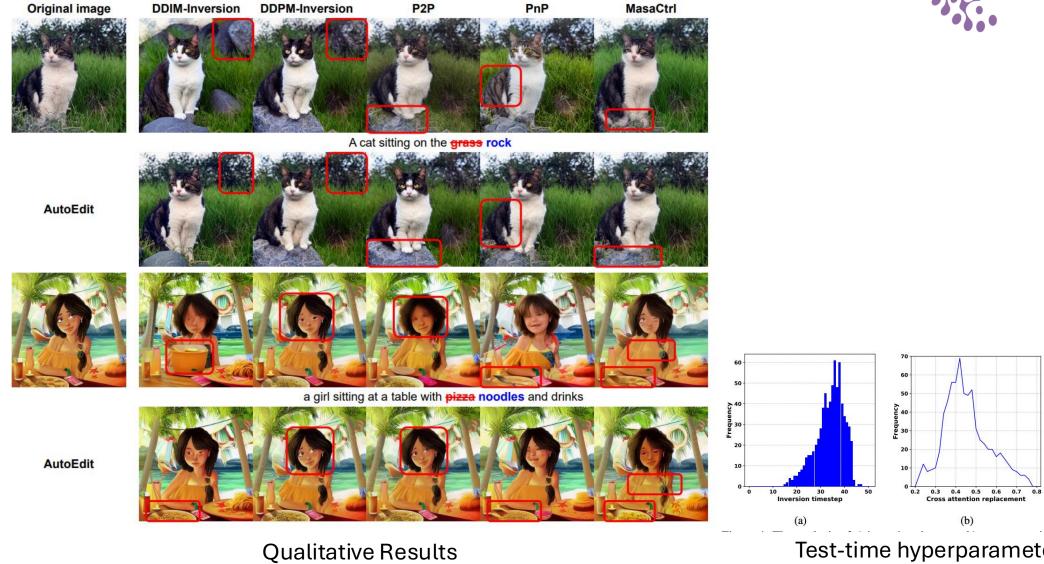

Network design:

- Policy model: Use Unet encoder as feature extractor + several trainable layers for policy prediction.
- Value model: Similar with Policy model, but outputs a single scalar.

: trainable

*: frozen

7. Experiments


Method	Base Model	Structure Distance ↓		kground SSIM ↑		tion LPIPS ↓	CLIP Edited ↑	Score Whole ↑	LLM Score
DDIM-Inversion [39] + AutoEdit	SD 1.4	38.10 18.74	21.36 24.65	76.67 81.28	103.95 52.94	146.60 95.10	23.30 22.65	26.31 25.72	0.96 1.12
DDPM-Inversion [15] + AutoEdit	SD 1.4	22.12 12.65	22.66 27.25	78.95 85.17	53.33 31.18	67.66 50.51	23.02 22.52	26.22 25.83	1.03 1.17
PnP Inversion [16]	SD 1.5	11.65	27.22	84.76	35.86	60.67	22.10	25.02	1.10
+ AutoEdit		11.06	27.85	85.04	33.77	60.12	23.00	25.79	1.19
P2P [12]	SD 1.4	14.75	25.82	84.02	40.93	61.78	22.29	25.44	1.08
+ AutoEdit		13.76	26.45	84.08	36.24	60.60	23.88	26.55	1.22
MasaCtrl [5]	SD 1.4	28.38	22.17	79.67	86.97	79.67	21.16	23.96	0.92
+ AutoEdit		21.33	23.48	80.06	46.28	71.35	21.75	24.86	0.99
DDPM-Inversion [15] +AutoEdit	SDXL	7.12 6.46	26.13 27.86	89.88 90.50	35.32 20.44	65.62 53.51	23.0 22.9	27.11 26.7	1.19 1.27
UltraEdit [47]	MM-DiT	10.82	26.5	84.7	46.7	75.8	22.4	25.6	1.20
+AutoEdit		7.61	27.3	86.2	37.6	64.9	22.6	25.7	1.26
InstructPix2Pix [4]	SD 1.5	35.37	20.8	76.4	226.8	157.3	22.1	24.5	0.65
+AutoEdit		28.68	22.2	78.5	181.4	132.8	22.3	24.7	0.82
Null-text [25]	SD 1.4	19.87	23.8	79.9	64.4	109.8	22.3	25.9	1.12
+AutoEdit		10.91	25.7	82.4	45.4	82.3	22.6	26.3	1.21

Method	PSNR	SSIM	CLIP Edit	CLIP Whole	LLM Score
Taming flow [42]	23.4	81.5	22.9	26.0	1.22
+AutoEdit	25.7	85.2	23.4	26.1	1.30
Fireflow [6]	23.1	82.2	22.4	25.2	1.20
+AutoEdit	26.2	86.2	22.9	25.2	1.27

- 1. Generalize across editing methods.
- 2. Generalize across different Diffusion architecture.

7. Experiments

Test-time hyperparameter selection

NEURAL INFORMATION PROCESSING SYSTEMS

7. Experiments

P1 P2	PSNR ↑	SSIM ↑	MSE ↓	LPIPS ↓	Edited ↑	Whole ↑	Reward
√	18.2	74.5	208.7	57.9	23.2	26.3	6.12
✓	22.1	77.4	52.7	69.7	20.7	23.4	5.42
√ ✓	27.2	85.3	31.1	50.5	22.5	25.8	6.25

Importance of Phase-1 training

lpha,eta	PSNR ↑	$\mathbf{SSIM} \uparrow$	$\mathbf{MSE}\downarrow$	$\textbf{LPIPS} \downarrow$	Edited ↑	Whole ↑
$\alpha = 30, \beta = 10$	19.65	77.11	150.5	138.6	24.15	27.34
$\alpha = 30, \beta = 20$	23.59	82.15	66.84	82.30	23.44	26.95
$\alpha = 30, \beta = 30$	27.25	85.17	31.18	50.51	22.52	25.83
lpha=30, eta=40	28.53	86.03	24.72	42.80	21.36	24.36

Background preservation and prompt alignment tradeoff

Method	1	Trials	s 3	AutoEdit	Optimal
DDIM-Inversion	1				6.17
DDPM-Inversion	1			6.25	6.32
P2P		6.31		6.38	6.45
MasaCtrl	5.47	5.59	5.65	5.65	5.75

Convergence of AutoEdit

Method	PSNR	SSIM	MSE	LPIPS	Edited	Whole	LLM
DDPM Inv	26.1	89.8	35.3	65.6	23.0	27.1	1.19
+ AutoEdit	27.8	90.5	20.4	53.5	22.9	26.7	1.27
DDPM Inv + AutoEdit + AutoEdit + LLM	29.1	91.8	19.1	49.1	22.7	26.6	1.31

LLM Score as reward function

Thank you