Option-aware Temporally Abstracted Value for Offline Goal-Conditioned Reinforcement Learning

Hongjoon Ahn¹*

Heewoong Choil*

Jisu Han^{2*}

Taesup Moon^{1,2,3}

*: equal contribution

¹Department of Electrical and Computer Engineering (ECE), Seoul National University ²Interdisciplinary Program in Artificial Intelligence (IPAI), Seoul National University

³ASRI/INMCSeoul National University

Goal-conditioned RL (GCRL)

Goal-conditioned policy

$$\pi(a|s,g) \quad s \in \mathcal{S}, g \in \mathcal{G}$$

Goal-conditioned RL (GCRL)

Goal-conditioned policy

$$\pi(a|s,g) \quad s \in \mathcal{S}, g \in \mathcal{G}$$

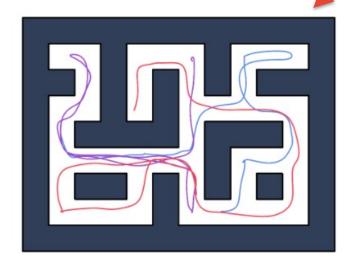
• Special case, $\mathcal{G} = \mathcal{S}$

$$r(s,g) = \begin{cases} 0, & s = g, \\ -1, & s \neq g \end{cases}$$

Learning to reach any state from any other state via shortest paths

Offline GCRL

• Learning a policy $\pi(a|s,g)$ from pre-collected data $(\mathcal{G}=\mathcal{S})$



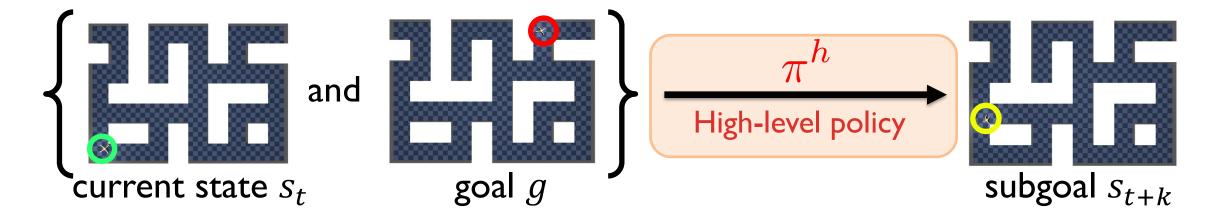
$$\tau = (s_0, a_0, s_1, ..., s_T)$$

Current method for offline GCRL

Hierarchical policy (HIQL^[1]) $\pi(a|s_t,g) = \pi^{\ell}(a|s_t,s_{t+k}) \circ \pi^{h}(s_{t+k}|s_t,g)$

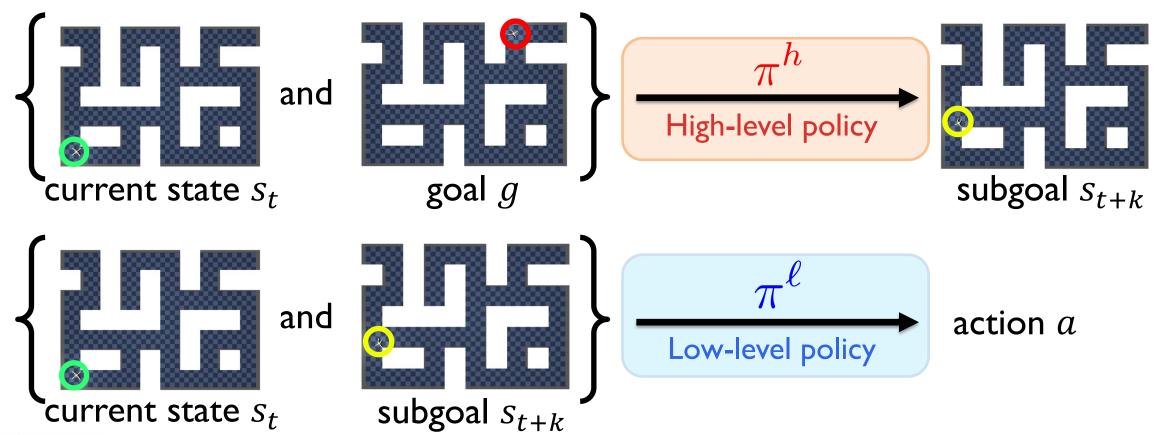
Current method for offline GCRL

Hierarchical policy (HIQL^[1]) $\pi(a|s_t,g) = \pi^{\ell}(a|s_t,s_{t+k}) \circ \pi^{h}(s_{t+k}|s_t,g)$

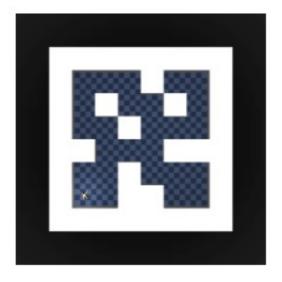


Current method for offline GCRL

Hierarchical policy (HIQL^[1]) $\pi(a|s_t,g) = \pi^{\ell}(a|s_t,s_{t+k}) \circ \pi^{h}(s_{t+k}|s_t,g)$

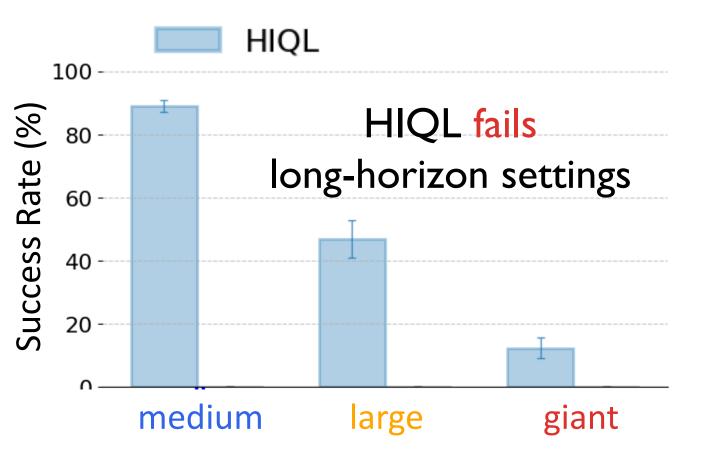


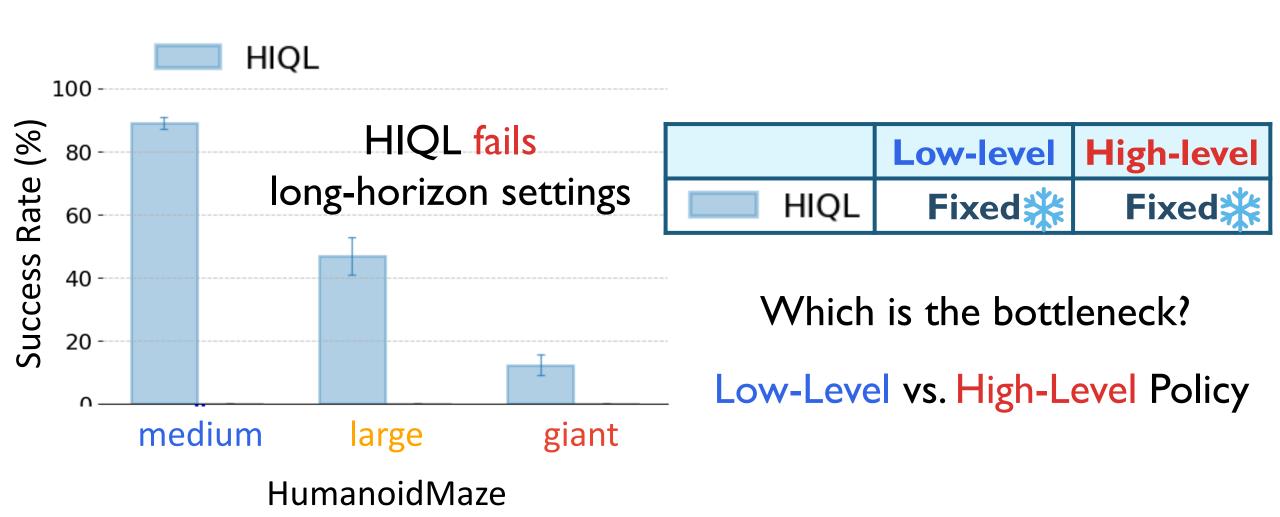
HumanoidMaze

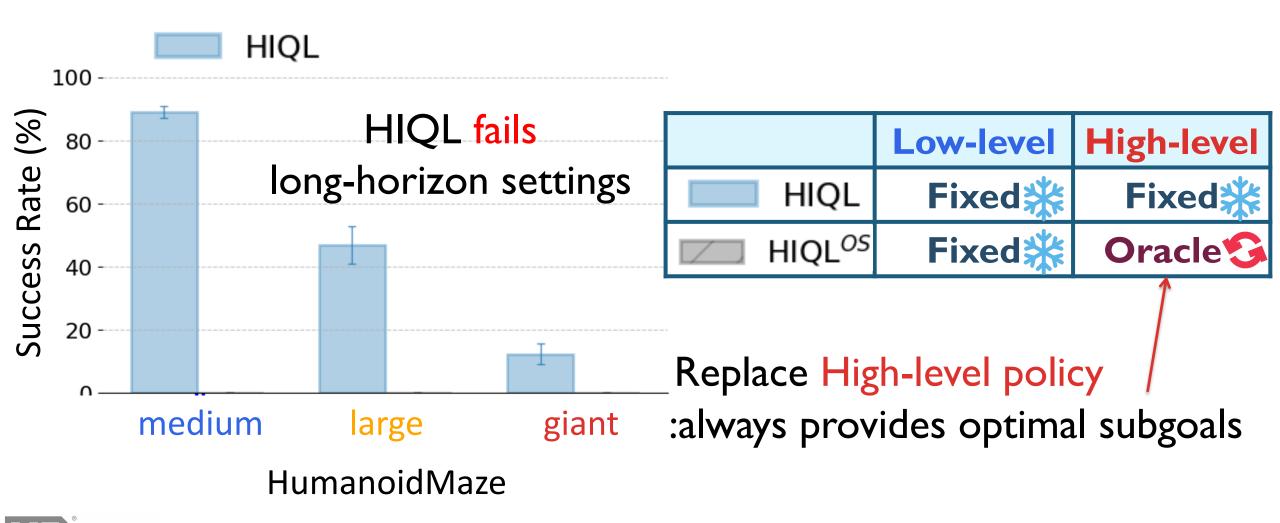


large

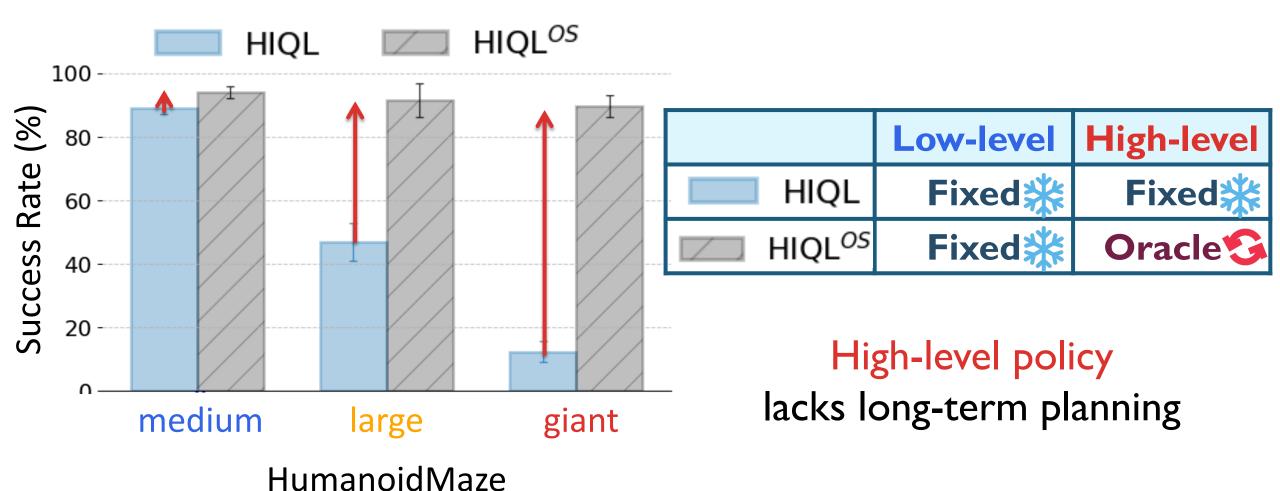
giant







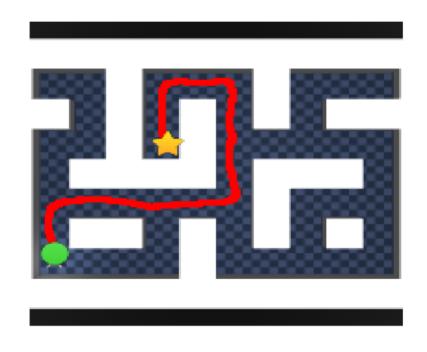
High-level policy is the main cause of failure

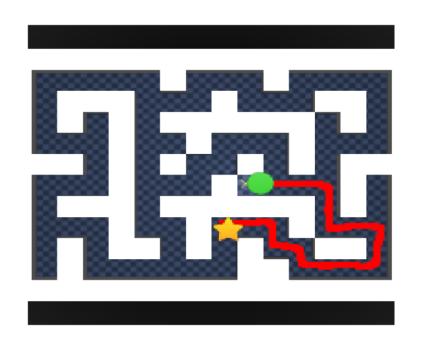


Value estimation in the long-horizon setting

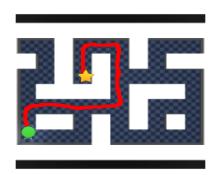
Value estimation in the long-horizon setting

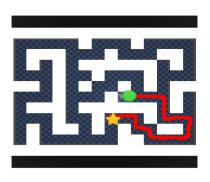
We collected optimal trajectories from to





Value estimation in the long-horizon setting



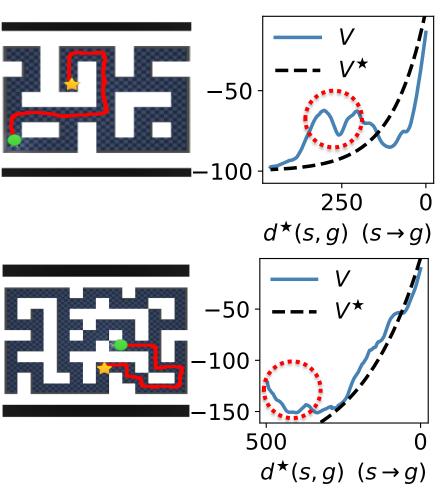


Optimal trajectory

$$\tau^* = (s_0, s_1, \dots, s_T = g)$$

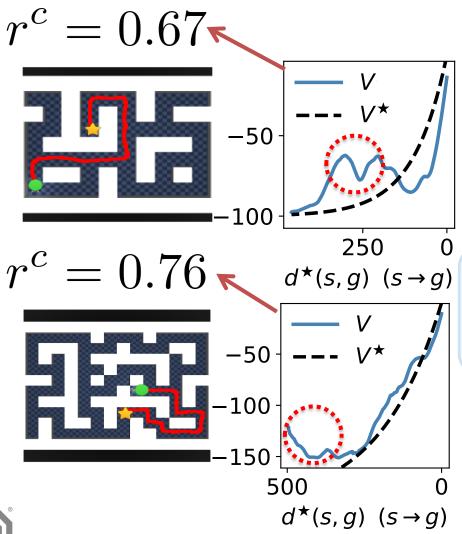
$$V^{\star}(s_j, g) > V^{\star}(s_i, g)$$
 for all $j > i$

Noisy learned value in long-horizon setting



Value estimation tends to be noisy in long-horizon settings!

Noisy learned value in long-horizon setting



Order consistency ratio r^c

: Value quality estimate for high-level policy

$$r^{c} = \frac{\sum_{t=0}^{T-k} \mathbf{1} \{ V(s_{t+k}, g) > V(s_{t}, g) \}}{(T - k + 1)}$$

To sum up, long-horizon challenges

High-level policy struggles with long-term planning ability

Value estimation becomes unreliable over long horizons

To sum up, long-horizon challenges

High-level policy struggles with long-term planning ability

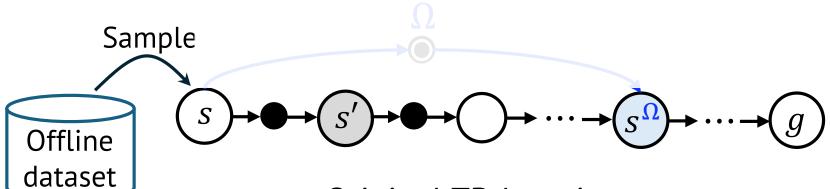
Value estimation becomes unreliable over long horizons

Improving high-level value learning via temporal abstraction

Training temporally abstracted value for the high-level policy

Training temporally abstracted value for the high-level policy

$$r(s^{\Omega}, g) + \gamma \bar{V}_{\text{OTA}}^{h}(s^{\Omega}, g) - V_{\text{OTA}}^{h}(s, g)$$



Original TD learning

$$r(s,g) + \gamma \overline{V}^h(s',g) - V^h(s,g)$$

Training temporally abstracted value for the high-level policy

$$r(s^{\Omega},g) + \gamma \bar{V}_{\text{OTA}}^{h}(s^{\Omega},g) - V_{\text{OTA}}^{h}(s,g)$$

Option Ω Sample $S \rightarrow S' \rightarrow S' \rightarrow \cdots \rightarrow G$ Offline dataset

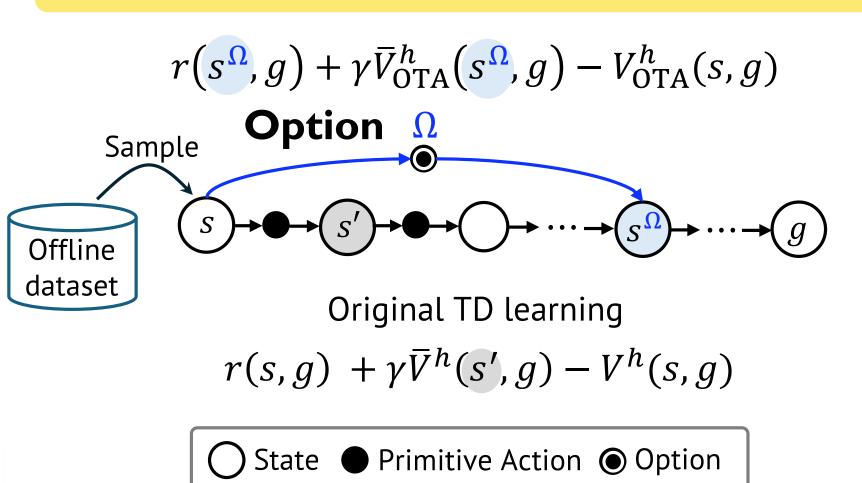
Original TD learning

$$r(s,g) + \gamma \overline{V}^h(s',g) - V^h(s,g)$$

State Primitive Action Option

temporally-extended course of action that enable temporal abstraction

Training temporally abstracted value for the high-level policy

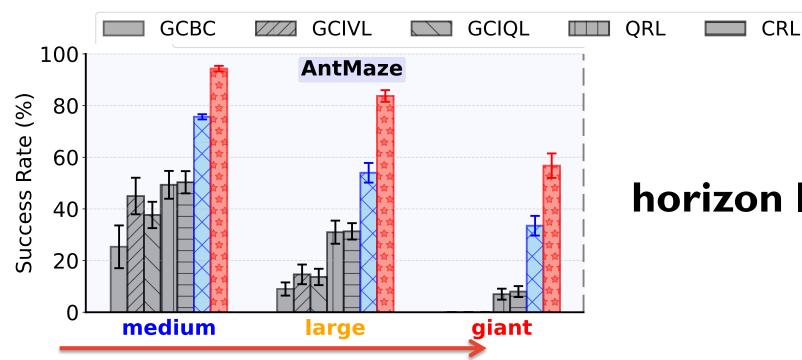


Horizon
Contraction

Expl. Evaluation on long-horizon tasks

Expl. Evaluation on long-horizon tasks

OTA achieves superior performance on long-horizon tasks



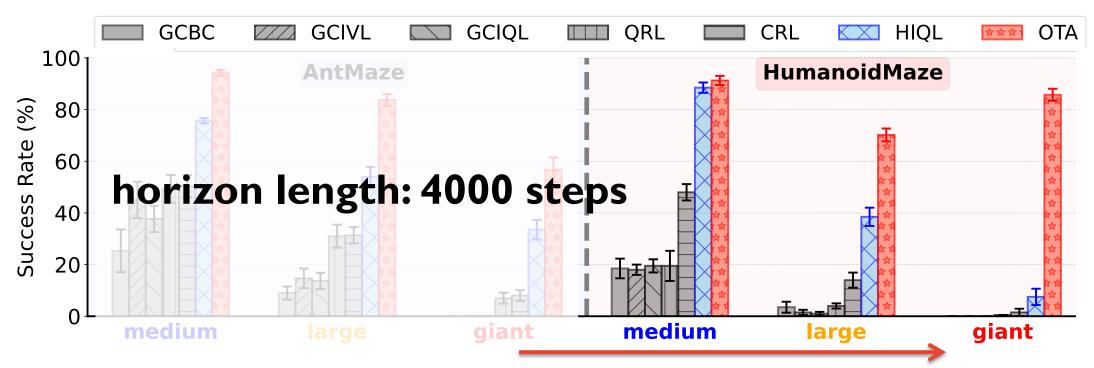
horizon length: 1000 steps

HIQL

OTA

Expl. Evaluation on long-horizon tasks

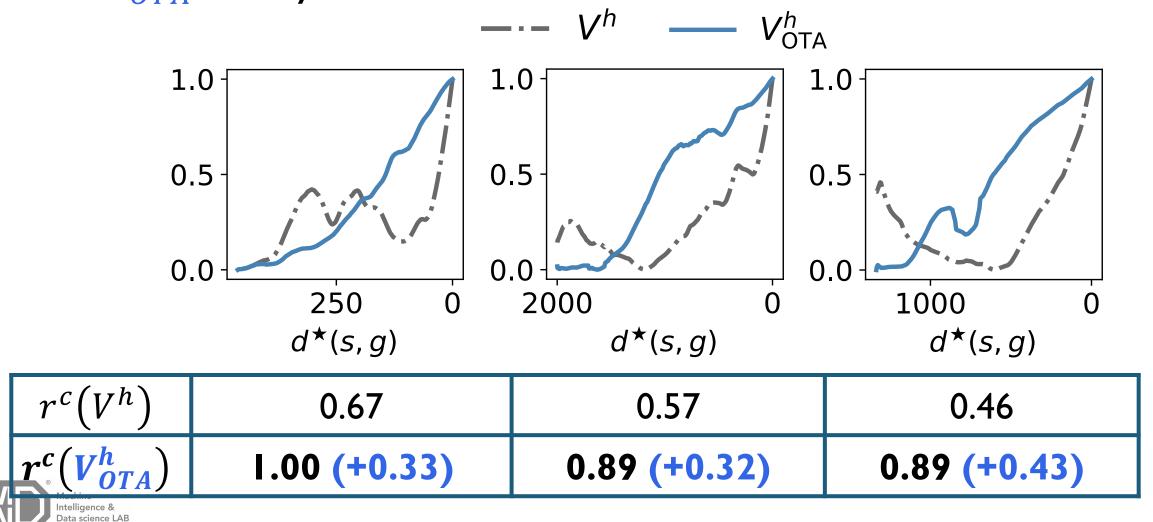
OTA achieves superior performance on long-horizon tasks



Exp2. Value estimation

Exp2. Value estimation

 V_{OTA}^{h} clearly exhibits a more monotonic increase than V^{h}



Conclusion

Existing GCRL methods struggle with long-horizon tasks

Caused by inaccurate value estimates over long-horizon

• OTA improves value learning using temporal abstraction

Thank you!

Paper

Project page

