

Thinking in Character: Advancing Role-playing Agents with Role-Aware Reasoning

Yihong Tang, Kehai Chen, Muyun Yang, Zhengyu Niu, Jing Li, Tiejun Zhao, Min Zhang

Harbin Institute of Technology, Shenzhen & Baidu Inc.

October 27, 2025

The Rise of Role-Playing Agents (RPAs)

- ▶ Growing Interest: Role-Playing Agents, powered by Large Language Models (LLMs), are increasingly popular for applications like emotional companionship and virtual interaction.
- Current Approach: Most RPAs are trained on dialogue data, focusing on mimicking superficial knowledge and conversational style.
- ▶ The Missing Piece: They lack a deep, human-like internal thought process. They can answer questions in character, but can they reason in character?

Core Challenges with Standard Reasoning

When we apply standard Large Reasoning Models (LRMs) to role-playing, two major problems arise:

1. Attention Diversion

- ► The model forgets its role.
- It focuses on solving the user's query as a general-purpose assistant, not as the character.
- ► The "who" is lost in favor of the "what".

2. Style Drift

- The model's reasoning is overly formal, logical, and structured.
- ▶ It lacks the character-specific, often emotional or narrative-driven, thinking style.
- The thoughts are rigid, not vivid.

Problem

These issues lead to generic, out-of-character thoughts and, consequently, out-of-character responses.

Our Solution: Role-Aware Reasoning (RAR)

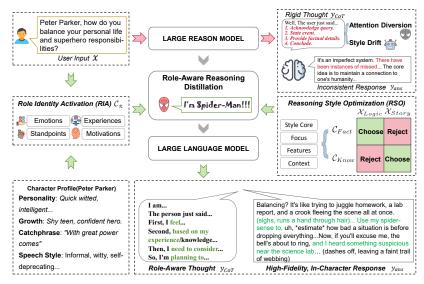


Figure: Overview of our Role-Aware Reasoning (RAR) method.

A Glimpse at Related Work

► Role-Playing Agents (RPAs):

- Early work used in-context learning and prompt engineering.
- Recent methods focus on fine-tuning with high-quality data from scripts, novels, etc.
- Some simulate thought from a third-person perspective.
- Our focus: Explicitly modeling first-person, in-character reasoning.

Reasoning in LLMs:

- LRMs generate step-by-step "chain of thought" traces to solve complex problems.
- Training involves reinforcement learning or knowledge distillation.
- Our contribution: We adapt and optimize the reasoning process itself for the creative domain of role-playing, not just for logical tasks.

Method 1: Role Identity Activation (RIA)

Goal: Combat *Attention Diversion* by keeping the model focused on its role.

- 1. **Extract Core Identity**: We prompt a powerful LRM to extract key character elements from a profile:
 - **Emotion**: The character's typical emotional state.
 - **Experience**: Key life events that shape them.
 - **Standpoint**: Their core beliefs and values.
 - ▶ Motivation: Their goals and desires.
- 2. **Guided Reasoning**: We use these elements as an explicit instruction, C_R , to guide the LRM in generating role-aware thought traces.

$$\mathscr{D}_{R} = \bigcup_{x \in \mathscr{X}_{Ori}} \pi_{LRM}(y \mid x, \mathscr{C}_{R})$$

3. **Distillation**: We then fine-tune our target LLM on this generated data \mathcal{D}_R to distill the role-aware thinking capability.

$$\mathscr{L}_{RIA} = -\mathbb{E}_{x,y \sim \mathscr{D}_R} [\log \pi_{LLM}(y \mid x)]$$

Method 2: Reasoning Style Optimization (RSO)

Goal: Mitigate *Style Drift* by teaching the model to adapt its thinking style.

- 1. Define Scenarios & Styles:
 - Scenarios: Logical Analysis (\mathscr{X}_{Logic}) vs. Vivid Interaction (\mathscr{X}_{Story}).
 - Styles: Fact-based (\mathscr{C}_{Fact}) vs. Character-knowledge-based (\mathscr{C}_{Know}).
- 2. Construct Preference Data: We generate pairs of examples.
 - **Positive** (\mathcal{D}_{S}^{+}) : Matched pairs (e.g., Logical scenario with Fact-based style).
 - **Negative** (\mathscr{D}_{S}^{-}) : Mismatched pairs (e.g., Logical scenario with Character-knowledge style).
- 3. **Contrastive Learning**: We train the model to prefer the positive examples over the negative ones using a contrastive loss function.

$$\mathscr{L}_{RSO} = -\mathbb{E}_{(x,y^{+}) \sim D_{S}^{+},(x,y^{-}) \sim D_{S}^{-}} \Big\{ \log \sigma \left[\pi_{LLM}(y^{+} \mid x) - \pi_{LLM}(y^{-} \mid x) \right] \Big\}$$

Experimental Setup

- ► Training Data: RoleBench-Train, with over 137k samples derived from film and TV show scripts.
- Benchmarks:
 - **SocialBench**: Evaluates social intelligence via multiple-choice tasks (role knowledge, style, humor, etc.).
 - ► CharacterBench: Assesses persona consistency, memory, and believability using human-annotated data.
- ► Baselines:
 - Vanilla, RAG, Distill: Standard training and reasoning approaches.
 - ▶ Thinking Modes: Different decoding strategies for reasoning.
 - ▶ **Neeko, Character-GLM**: Specialized state-of-the-art role-playing models.
- Implementation:
 - Base Model: LLaMA-3-8B.
 - Training: LoRA on 8 H20 GPUs.

Main Results: Character Persona (CharacterBench)

Table: Performance on the CharacterBench benchmark. Higher is better.

Method	Memory MC	Knowledge		Persona				Emotion		Morality		Believability		Avg.
		FA	BC _K	AC ^b	AC^h	BCb	BCh	ES	ER	MS	MR	HL	EG	
Vanilla	3.28	2.04	3.61	3.64	3.28	3.21	2.98	2.72	2.43	4.37	4.59	2.56	2.74	3.19
+ Zero-shot	3.24	2.03	3.61	3.67	3.26	3.11	2.98	2.65	2.51	4.44	4.60	2.64	2.76	3.19
+ One-shot	3.27	2.08	3.64	3.68	3.28	3.12	3.02	2.67	2.58	4.42	4.65	2.57	2.78	3.21
+ Few-shot	3.27	2.13	3.69	3.69	3.29	3.21	2.99	2.81	2.52	4.49	4.66	2.59	2.79	3.24
Distill	3.81	2.43	3.59	4.14	4.15	3.91	3.62	3.05	2.65	4.78	4.71	2.68	2.84	3.57
+ ZeroThink	3.69	2.17	3.31	4.06	4.07	3.88	3.32	3.05	2.93	4.73	4.73	2.61	2.83	3.49
+ LessThink	3.75	2.11	3.42	4.17	4.02	3.70	3.27	3.02	3.01	4.79	4.74	2.73	2.92	3.51
+ MoreThink	2.59	2.44	3.93	2.58	2.72	2.61	3.19	2.62	2.53	4.96	4.76	2.14	2.62	3.05
Neeko	3.28	2.04	3.61	3.64	3.28	3.21	2.98	2.72	2.43	4.37	4.59	2.56	2.74	3.19
CharacterGLM	3.22	2.01	3.60	3.28	3.49	3.01	2.90	2.84	2.51	4.51	4.78	2.64	2.98	3.21
RAR	3.99	2.54	3.85	4.23	4.20	4.06	3.93	3.13	2.79	4.82	4.76	2.78	2.93	3.69

Main Results: Social Intelligence (SocialBench)

Table: Performance on the SocialBench benchmark. Higher is better.

Method	Know.	Sty.	ED	SU	HSD	MEM	Neu.	Pos.	Neg.	Avg.
Vanilla	72.1	60.3	38.2	38.3	72.4	62.5	66.0	71.7	33.5	57.2
+ Zero-shot	70.5	60.0	38.6	46.3	72.0	60.7	64.7	73.0	34.6	57.8
+ One-shot	70.1	57.0	33.5	30.8	78.0	50.5	58.0	67.9	34.1	53.3
+ Few-shot	72.1	58.4	35.1	33.8	66.0	55.7	61.9	70.5	29.7	53.7
Distill	80.6	69.2	38.6	43.8	67.7	52.6	73.8	78.2	45.5	61.1
+ ZeroThink	76.9	68.6	34.9	30.4	75.0	57.5	69.2	75.1	45.1	59.2
+ LessThink	77.5	69.9	31.5	37.2	76.0	50.9	73.3	77.7	44.7	59.9
+ MoreThink	76.1	65.3	39.9	46.4	59.0	60.8	66.0	82.7	<u>57.2</u>	61.5
Neeko	76.5	61.6	37.2	40.2	66.5	61.3	67.0	71.6	46.7	58.7
CharacterGLM	79.4	74.7	41.3	26.2	71.1	57.3	69.5	84.4	36.4	60.0
RAR	83.3	<u>72.6</u>	<u>40.7</u>	35.2	67.5	52.9	83.1	84.8	68.5	65.4

Ablation Studies and Component Analysis

1.Impact of RIA & RSO

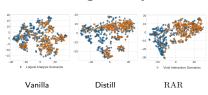
Method	Mem.	Know.		Persona				Emo.		Moral.		Believ.		Δνσ.
	MC	FA	BC_K	AC^b	AC^h	BC_P^b	BC_P^h	ES	ER	MS	MR	HL	EG	,g.
RAR	3.99	2.54	3.85	4.23	4.20	4.06	3.93	3.13	2.79	4.82	4.76	2.78	2.93	3.69
w/o RSO	3.87	2.26	3.81	4.30	4.06	3.84	3.39	3.15	2.89	4.80	4.69	2.76	3.01	3.60
w/o RIA	3.93	2.41	3.60	4.17	4.15	3.76	3.46	3.18	2.63	4.90	4.61	2.30	2.22	3.49

2. Quality of Reasoning

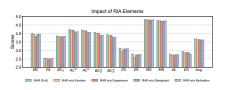
Traces

Method	Coherence	Relevance	Effectiveness	Conciseness
RAR	2.86	3.83	3.92	1.81
w/o RSO	2.78	3.81	3.74	1.91
w/o RIA	2.88	3.61	3.87	1.97
Distill	2.71	3.54	3.84	2.06
+ MoreThink	2.53	3.56	3.64	1.86

4. RSO Mitigates Style Drift



3. Validity of RIA Components



Conclusion & Future Work

Conclusion

- We introduced Role-Aware Reasoning (RAR), a novel method to imbue LLMs with deep, character-consistent thought processes.
- ► RAR effectively addresses two key challenges:
 - ▶ Attention Diversion, via Role Identity Activation (RIA).
 - Style Drift, via Reasoning Style Optimization (RSO).
- Extensive experiments show that RAR significantly outperforms existing methods in persona consistency, social intelligence, and overall believability.

Future Work

- Extending RAR to handle more fine-grained character attributes.
- Incorporating long-term memory and dynamic character development.
- Applying role-aware reasoning to more complex, multi-agent social simulations.

Thank You

Questions?