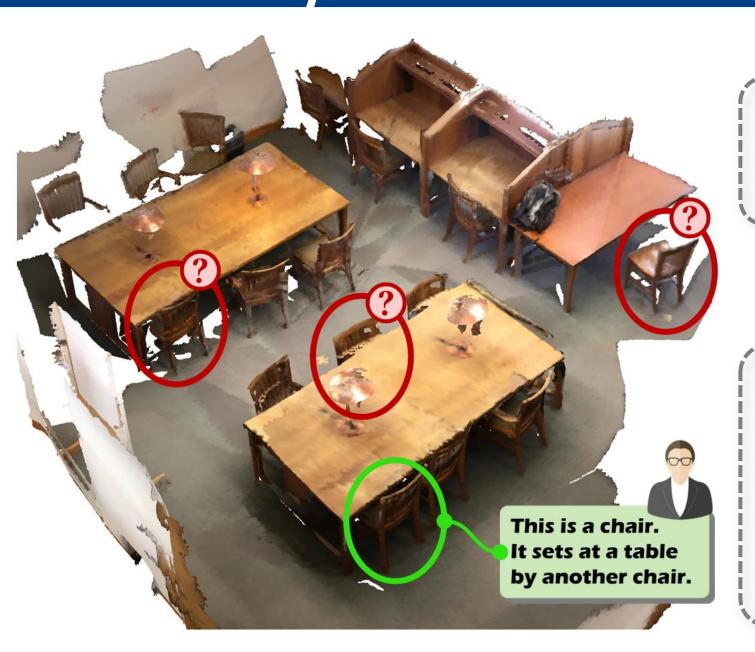


Jury-and-Judge Chain-of-Thought for Uncovering Toxic Data in 3D Visual Grounding

Kaixiang Huang, Qifeng Zhang, Jin Wang, Jingru Yang, Yang Zhou Huan Yu, Guodong Lu, Shengfeng He



Background

3D Visual Grounding Data Requires:

 Each annotation uniquely corresponds to one object in the scene.

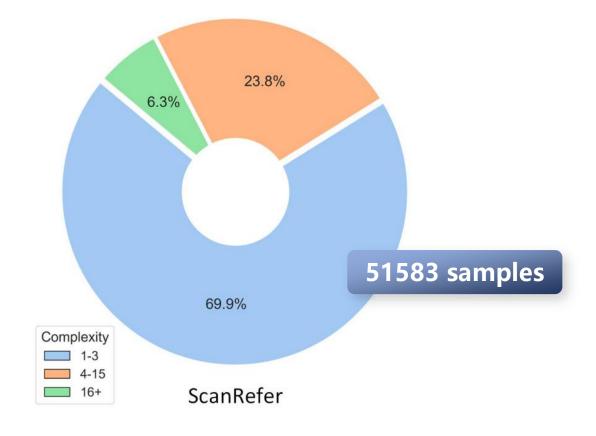
Bad Annotations

However, the <u>annotation process</u> of 3DVG is difficult and requires sustained focus.

Annotators need to extract clues from **sparse 3D point clouds** and **disjointed 2D frames**.

This leads to a sharp increase in the risk of annotation errors.

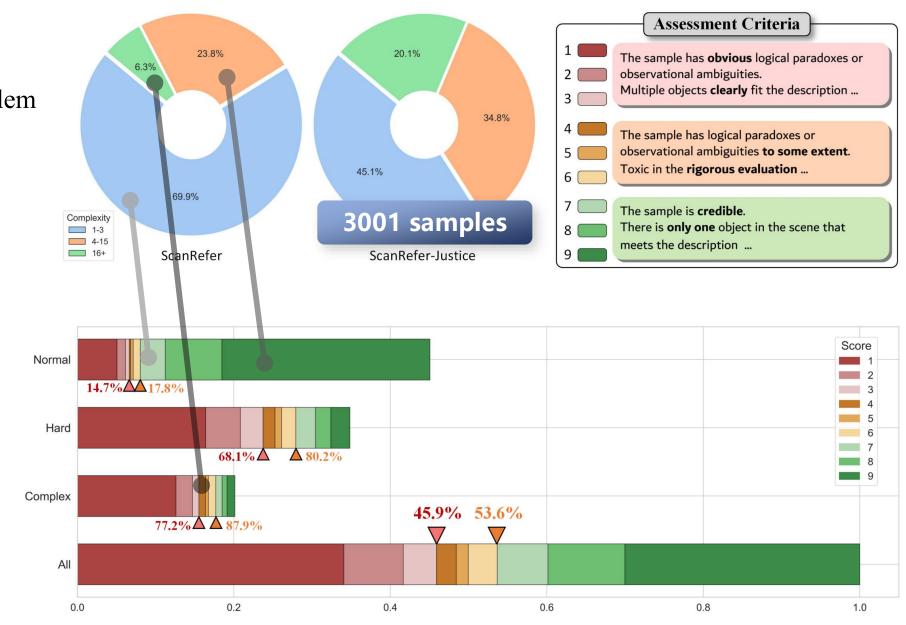
So **how serious** is the data problem in 3DVG now?



Motivation

So **how serious** is the data problem in 3DVG now?

- As the complexity of the scene increases, the incidence of annotation errors made by annotators **gradually rises**.
- High-confidence annotations for some complex scenes are even below 50%.



Find the Only Object matches the description!

Toxic Data?

This is a white lamp. It is on a brown table.

Multiple objects fit the description, uniqueness cannot be guaranteed

The Next To relation is Symmetrical. Description matches both chairs.

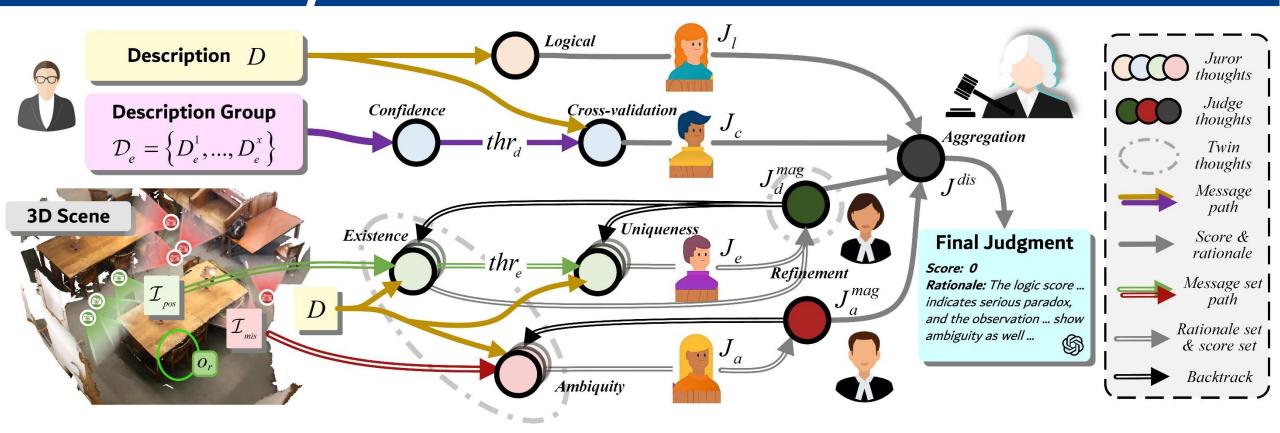
Toxic samples arise from **two sources**:

Paradox!

- > Logical paradoxes
- > Referential ambiguities

Impacts model training

Affects algorithm evaluation



Refer-Judge

- > Hypergraph-of-Thoughts
- > Agentic framework
- > Deliberation-based structured analysis

Jury-and-Judge

- ➤ **Jury:** multi-faceted evaluations for scene-level data
- ➤ **Judge:** self-consistency evaluation and corroborative refinement
- ➤ No task-specific fine-tuning or external perception

The Refer task aims to find **one specific** object from a given **Description**.

Identify logical paradox in the description ...

 P_l

The description needs analysis is: This is a chair. It sets at a table by another chair.

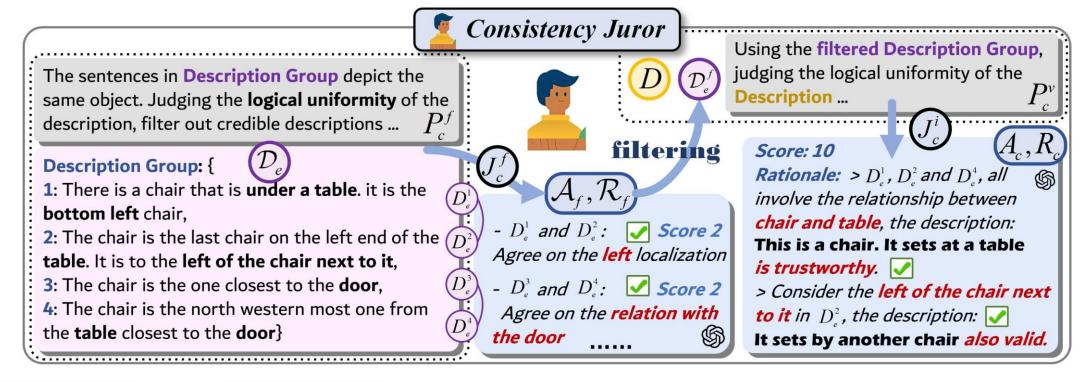
Score: 0 (A_l, R_l)

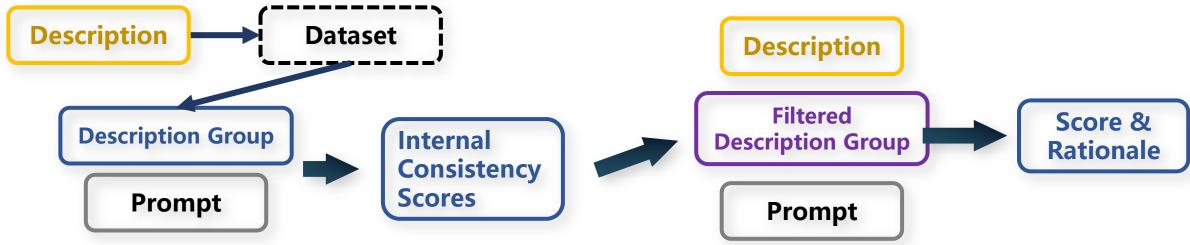
Rationale: Since the next to relation is symmetrical, if chair A is next to chair B, then the chair B is also next to chair A. Impossible to uniquely identify the target chair.

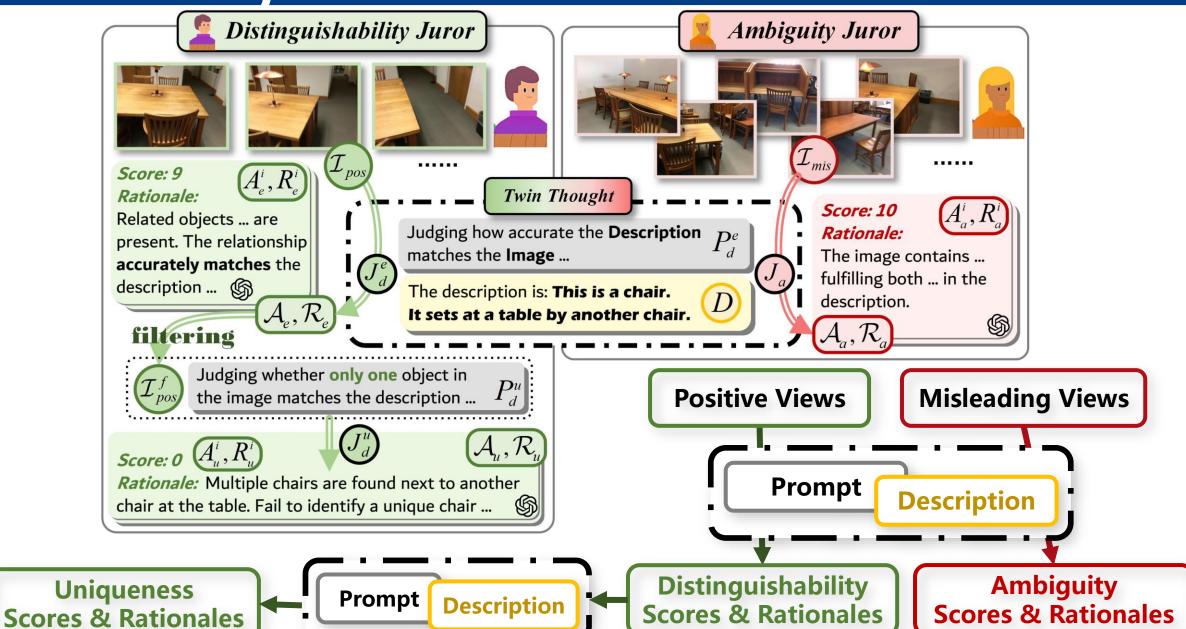
Description

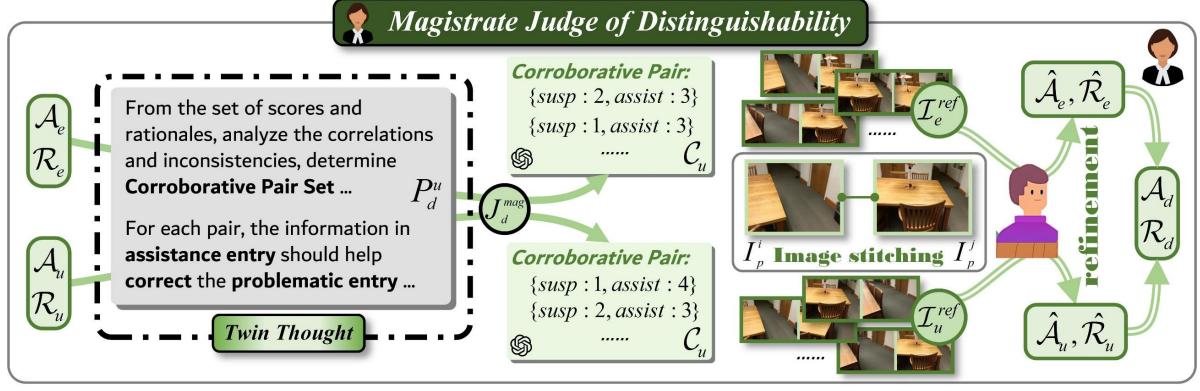
Prompt

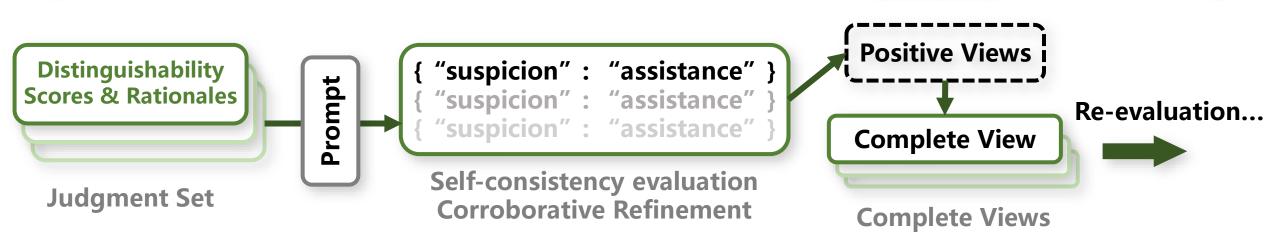
Score & Rationale












```
District Judge
The **JSON MESSAGE** needs analysis is: "{
  "JUDGE MESSAGES": {
    "Distinguishability": [ [9: 2], [5: 0] ],
    "Ambiguity": [8, 3, 5, 5, 4, 5],
                                                                             Evaluate the final score
    "Logical": 1,
                                                                             based on four perspective:
    "Consistency": 8 },
                                                                             "Logical",
  "RATIONALE MESSAGES": {
                                                                             "Consistency",
    "Existence": [Rationale: ..., ...],
                                                                             "Distinguishability",
                                                                                                           FINAL
    "Uniqueness": [Rationale: ···, ···, ···]
                                                                                                           SCORE
                                                                             "Ambiguity" ...
                                                                                                  oldsymbol{p}dis
    "Logic": "Rationale: ...,
    "Consistency": Rationale: ••• " } }".
```


Model	Agreement ↑	Precision ↑	Recall ↑	F1 ↑	RMSE ↓	MAE ↓
GPT-4o	82.77	82.95	85.77	84.33	2.69	1.71
GPT-4.1-mini	81.81	82.64	83.66	83.14	2.82	1.94
Grok-3	81.14	81.03	84.66	82.81	3.07	1.84
Gemini-2.5 Pro	77.01	78.53	78.39	78.53	3.15	2.20
LLAMA-3.2-11B	67.88	67.67	76.83	71.96	3.71	2.73
Human Performance	84.87	90.43	82.92	86.51	-	-

- ➤ Refer-Judge achieves **human-level judgment capability**, slightly lagging with human experts.
- > The Refer-Judge algorithm can **generalize** to multiple models.
- ➤ Better base models result in better performance.

Method	Unique ↑		Mult	iple ↑	Overall ↑		
	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5	
TGNN	68.61	56.80	29.84	23.18	37.37	29.70	
InstanceRefer	75.72	64.66	29.41	22.99	38.40	31.08	
3DVG-Transformer	81.93	60.64	39.30	28.42	47.57	34.67	
SeeGround	75.7	68.9	34.0	30.0	44.1	39.4	
3D-VisTA	81.6	75.1	43.7	39.1	50.6	45.8	
ScanRefer	76.33	53.51	32.73	21.11	41.19	27.40	
+ Refer-Judge	79.57(+3.24)	54.31(+0.8)	34.15(+1.42)	22.69(+1.58)	42.96(+1.77)	28.83(+1.43)	
3DVLP	85.18	70.04	43.65	33.40	51.70	40.51	
+ Refer-Judge	86.29(+1.11)	72.19(+2.15)	44.24(+0.59)	34.88(+1.48)	52.39(+0.69)	42.11(+1.60)	
ConcreteNet	82.39	75.62	41.24	36.56	48.91	43.84	
+ Refer-Judge	84.14(+1.75)	79.57(+3.95)	41.97(+0.73)	36.16(-0.40)	49.94(+1.03)	44.55(+0.71)	

After removing the toxic data from the ScanRefer training set, all baseline achieving consistent improvements.

Experiment

Method	Thr.	Toxic Acc@0.25	data↓ Acc@0.5	Unique (p Acc@0.25	ourified) ↑ Acc@0.5	Multiple (purified) ↑ Acc@0.25 Acc@0.5		Overall (purified) ↑ Acc@0.25 Acc@0.5	
ScanRefer + Refer-Judge 3DVLP + Refer-Judge	1 ~7.6%	20.44 17.96(-2.48) 22.69 22.41(-0.28)	13.12 12.84(-0.28) 17.36 14.43(-2.93)	76.91 79.52(+2.61) 84.65 86.7(+2.05)	50.57 55.40(+4.83) 68.27 70.42(+2.15)	34.77 35.73(+0.96) 44.58 46.49(+1.91)	21.78 24.27(+2.49) 34.38 36.01(+1.63)	43.60 44.91(+1.31) 52.97 54.91(+1.94)	27.81 30.79(+2.98) 42.17 43.22(+1.05)
ScanRefer + Refer-Judge 3DVLP + Refer-Judge	≤ 2 ~9.3%	21.69 18.76(-2.93) 22.91 22.11(-0.80)	14.58 13.67(-0.91) 17.75 15.46(-2.29)	76.89 79.50(+2.61) 85.97 86.41(+0.44)	50.57 55.41(+4.84) 70.02 72.27(+2.25)	34.96 36.07(+1.11) 46.44 47.14(+0.70)	21.8 24.44(+2.64) 36.02 37.43(+1.41)	43.91 45.33(+1.42) 54.86 55.50(+0.64)	27.94 31.04(+3.10) 43.01 44.85(+1.84)
ScanRefer + Refer-Judge 3DVLP + Refer-Judge	≤3 ~21.1%	22.58 21.53(-1.05) 27.57 25.85(-1.72)	16.03 15.60(-0.43) 21 18.83(-2.17)	77.02 79.61(+2.59) 86.18 86.52(+0.34)	50.66 55.59(+4.93) 70.53 72.42(+1.89)	37.34 38.59(+1.25) 49.68 50.84(+1.16)	22.88 25.91(+3.03) 38.48 40.63(+2.15)	46.99 48.56(+1.57) 58.55 59.51(+0.96)	29.63 33.12(+3.49) 46.27 48.36(+2.09)
ScanRefer + Refer-Judge 3DVLP + Refer-Judge	≤ 4 ~40.6%	24.23 23.46(-0.77) 29.32 28.36(-0.96)	17 17.28(+0.28) 22.91 21.85(-1.06)	77.12 79.65(+2.53) 86.3 86.64(+0.34)	50.71 55.72(+5.01) 70.71 72.55(+1.84)	38.97 40.51(+1.54) 52.34 53.77(+1.43)	23.39 26.73(+3.34) 40.42 42.69(+2.27)	49.41 51.22(+1.81) 61.63 62.76(+1.13)	30.87 34.66(+3.79) 48.7 50.86(+2.16)

- A more significant improvement in model performance can be observed on the purified validation set.
- > The **original model** outperforms the purified model on toxic validation set (*due to toxic prior knowledge*).

Thanks for watching