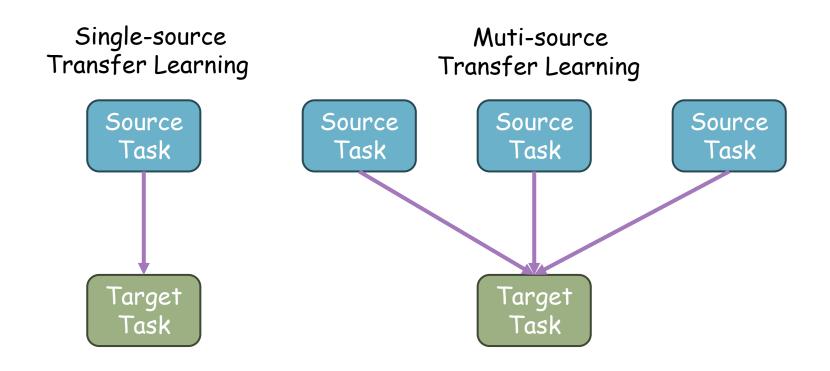


A High-Dimensional Statistical Method for Optimizing Transfer Quantities in Multi-Source Transfer Learning

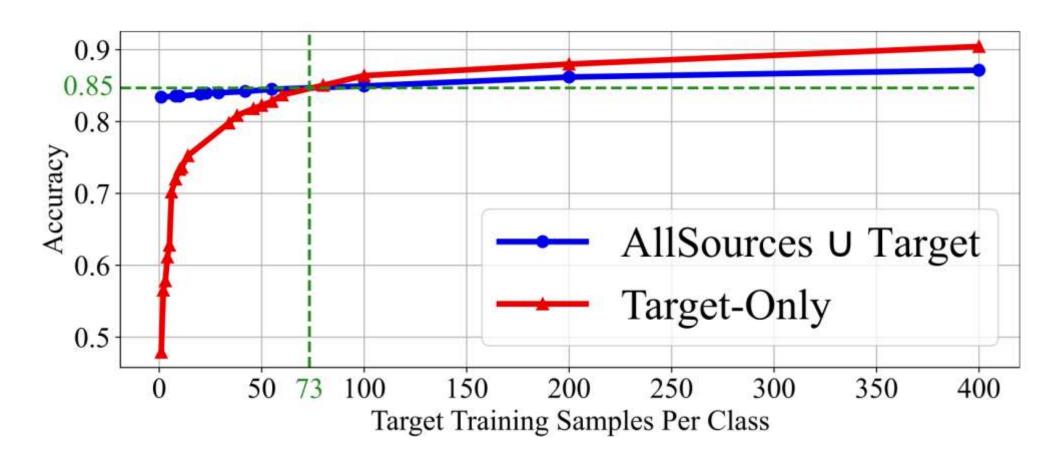
Qingyue Zhang*, Haohao Fu*, Guanbo Huang*, Yaoyuan Liang, Chang Chu,
Tianren Peng, Yanru Wu, Qi Li, Yang Li, Shao-Lun Huang
Tsinghua University
zhangqy23@mails.tsinghua.edu.cn

- Background
- Preliminaries
- Main Results
- Conclusion

Background: Transfer Learning



Background: Transfer Learning



What is the optimal transfer quantity of each source task?

- Background
- Preliminaries
- Main Results
- Conclusion

Preliminaries: Asymptotic Normality of the MLE

 The maximum likelihood estimator (MLE) is defined as the maximizer of the empirical loglikelihood:

$$\hat{\underline{\theta}}_{\text{MLE}} = \underset{\underline{\theta}}{\text{arg max}} \frac{1}{n} \sum_{x \in \mathcal{D}} \log P_{X;\underline{\theta}}(x)$$

 Asymptotic Normality: As the sample size increases, the distribution of the normalized estimation error converges in law to a multivariate Gaussian distribution

$$\sqrt{n}\left(\hat{\underline{\theta}}_{\mathrm{MLE}} - \underline{\theta}^*\right) \xrightarrow{d} \mathcal{N}\left(0, J(\underline{\theta}^*)^{-1}\right)$$

• The Fisher information matrix, which characterizes the amount of information carried by the distribution about the parameter, is defined as

$$J(\underline{\theta})^{d \times d} = \mathbb{E}\left[\left(\frac{\partial}{\partial \underline{\theta}} \log P_{X;\underline{\theta}}\right) \left(\frac{\partial}{\partial \underline{\theta}} \log P_{X;\underline{\theta}}\right)^T\right].$$

Preliminaries: Problem Formulation

- Target task: Training samples $X^{N_0} = \{x_j\}_{j=1}^{N_0} \stackrel{\text{i.i.d.}}{\sim} P_{X;\underline{\theta}_0}$.
- Source tasks: Each source task S_i has $X_i^{N_i} = \{x_{i,j}\}_{j=1}^{N_i} \stackrel{\text{i.i.d.}}{\sim} P_{X;\underline{\theta}_i}, i \in [1, K].$
- Estimator: The training process is formulated as a parameter estimation problem. The MLE $\hat{\underline{\theta}}$ is obtained using all target samples and a selected subset of source samples:

$$\underline{\hat{\theta}} = \arg \max_{\underline{\theta}} \left[\sum_{x \in X^{N_0}} \log P_{X;\underline{\theta}}(x) + \sum_{i=1}^K \sum_{x \in X^{n_i}} \log P_{X;\underline{\theta}}(x) \right].$$

Objective: Find optimal transfer quantities n₁*,..., n_K* by minimizing the expected K-L divergence between the true target distribution P_{X;θ} and the learned one P_{X;θ}.

$$n_1^*,\ldots,n_K^*=\underset{n_1,\ldots,n_K}{\operatorname{arg\,min}}\,\mathbb{E}[D(P_{X;\underline{\theta}_0}||P_{X;\underline{\hat{\theta}}})].$$

- Background
- Preliminaries
- Main Results
- Conclusion

Main Results

Theorem (Theorem 1. Single-source transfer with 1-dimensional models)

In transfer between $P_{X;\theta_0}$ and $P_{X;\theta_1}$, where $\theta_0, \theta_1 \in \mathbb{R}$ and $|\theta_0 - \theta_1| = O(\frac{1}{\sqrt{N_0}})$. Then, the K-L measure $\mathbb{E}[D(P_{X;\underline{\theta}_0}||P_{X;\hat{\theta}})]$ can be expressed as:

$$\frac{1}{2} \left(\underbrace{\frac{1}{N_0 + n_1}}_{\text{variance term}} + \underbrace{\frac{n_1^2}{(N_0 + n_1)^2} t}_{\text{bias term}} \right) + o\left(\frac{1}{N_0}\right), \text{ where } t \triangleq J(\theta_0)(\theta_1 - \theta_0)^2.$$

Optimal Transfer Quantity: The optimal transfer quantity n₁* is

$$n_1^* = \begin{cases} N_1, & \text{if } N_0 \cdot t \le 0.5\\ \min\left(N_1, \frac{N_0}{2N_0t - 1}\right), & \text{if } N_0 \cdot t > 0.5 \end{cases}$$
 (1)

Main Results

Theorem (Theorem 2. Single-source transfer with high-dimensional models)

In transfer between $P_{X;\theta_0}$ and $P_{X;\theta_1}$, where $\theta_0, \theta_1 \in \mathbb{R}^d$ and $||\theta_0 - \theta_1|| = O(\frac{1}{\sqrt{N_0}})$. Then, the K-L measure $\mathbb{E}[D(P_{X;\underline{\theta}_0}||P_{X;\underline{\theta}})]$ can be expressed as:

$$\frac{d}{2}\left(\frac{1}{N_0+n_1}+\frac{n_1^2}{(N_0+n_1)^2}t\right)+o\left(\frac{1}{N_0}\right), \text{ where } t\triangleq \frac{(\underline{\theta}_1-\underline{\theta}_0)^\top J(\underline{\theta}_0)(\underline{\theta}_1-\underline{\theta}_0)}{d}.$$

Optimal Transfer Quantity: The optimal transfer quantity n₁* is

$$n_1^* = \begin{cases} N_1, & \text{if } N_0 \cdot t \le 0.5\\ \min\left(N_1, \frac{N_0}{2N_0t - 1}\right), & \text{if } N_0 \cdot t > 0.5 \end{cases}$$
 (2)

Main Results

Theorem (Theorem 3. Multi-source transfer with high-dimensional models)

In the multi-source setting, we denote $s = \sum_{i=1}^{K} n_i$, and $\alpha_i = \frac{n_i}{s}$. Then, the K-L measure can be expressed as:

$$\frac{d}{2}\left(\frac{N_0}{(N_0+s)^2}+\frac{s^2}{(N_0+s)^2}t\right)+o\left(\frac{1}{N_0}\right),t=\frac{\underline{\alpha}^T\Theta^TJ(\underline{\theta}_0)\Theta\underline{\alpha}}{d},$$

where $\underline{\alpha} = [\alpha_1, \dots, \alpha_K]^{\top}$, and $\Theta^{d \times K} = [\underline{\theta}_1 - \underline{\theta}_0, \dots, \underline{\theta}_K - \underline{\theta}_0]$.

Optimal Transfer Quantities: The optimal quantities n_i^* are obtained by minimizing the K-L measure. Specificially, we perform a grid search over the feasible range of s, and for each candidate s', solve a quadratic programming problem to obtain the optimal $\underline{\alpha}'$ under the constraint set A(s'). The final optimal pair $(s^*,\underline{\alpha}^*)$ is selected as the one yielding the minimum value of the objective function among all candidate pairs. Finally, we use $n_i^* = s^*\alpha_i^*$.

Main Results: Algorithm

Algorithm 1 OTQMS: Training

- 1: Input: Target data $D_{\mathcal{T}} = \{(z_{\mathcal{T}}^i, y_{\mathcal{T}}^i)\}_{i=1}^{N_0}$, source data $\{D_{S_k} = \{(z_{S_k}^i, y_{S_k}^i)\}_{i=1}^{N_k}\}_{k=1}^K$, model type $f_{\underline{\theta}}$ and its parameters $\underline{\theta}_0$ for target task and $\{\underline{\theta}_k\}_{k=1}^K$ for source tasks, parameter dimension d.
- 2: Parameter: Learning rate η.
- 3: **Initialize:** randomly initialize $\underline{\theta}_0$, use parameters of pretrained source models to initialize $\{\underline{\theta}_k\}_{k=1}^K$.
- 4: Output: a well-trained $\underline{\theta}_0$ for target task model $f_{\underline{\theta}_0}$.
- 5: $D_{train} \leftarrow D_{T}$ // Initialize the training dataset by target task samples 6: **repeat** // Use dynamic strategy to train the target task

6: repeat
7:
$$\mathcal{L}_{train} \leftarrow \frac{1}{|D_{train}|} \sum_{(y^i, z^i) \in D_{train}} \ell\left(y^i, f_{\underline{\theta}_0}(z^i)\right)$$

8: $\underline{\theta}_0 \leftarrow \underline{\theta}_0 - \eta \nabla_{\underline{\theta}_0} \mathcal{L}_{train}$

9: $\Theta \leftarrow [\underline{\theta}_1 - \underline{\theta}_0, \dots, \underline{\theta}_K - \underline{\theta}_0]^T$

10: $J(\underline{\theta}_0) \leftarrow (\nabla_{\underline{\theta}_0} \mathcal{L}_{train})(\nabla_{\underline{\theta}_0} \mathcal{L}_{train})^T$

11: $(s^*, \underline{\alpha}^*) \leftarrow \arg\min_{(s,\underline{\alpha})} \frac{d}{2} \left(\frac{1}{N_0 + s} + \frac{s^2}{(N_0 + s)^2} \frac{\underline{\alpha}^T \Theta^T J(\underline{\theta}_0) \Theta \underline{\alpha}}{d}\right)$

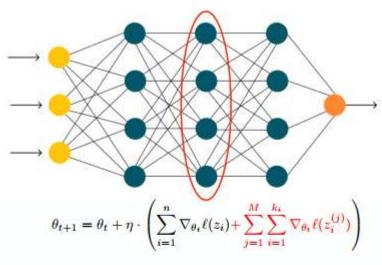
12: $D_{source} \leftarrow \bigcup_{k=1}^K \left\{D_{S_k}^* \middle| D_{S_k}^* \subseteq D_{S_k}, |D_{S_k}^*| = s^* \alpha_k^*\right\}$

Dynamic Strategy

 $D_{train} \leftarrow D_{source} \bigcup D_{\mathcal{T}}$

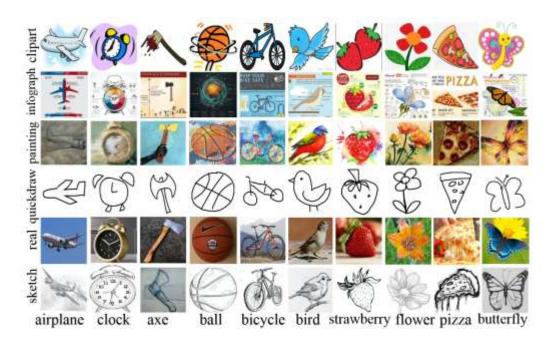
14: until <u>\tilde{\theta}_0</u> converges;

// Update the trainning dataset



- The quantities in computing the optimal number of samples can be estimated from current parameters;
- Update the parameters in SGD algorithm with both target samples and k_i samples from source task i;
- Iteratively update the optimal sample numbers and network parameters.

Main Results: Dataset of Experiment



Office-Home

Four domains, each formulated as a 65-class classification task.

Domainnet

Six domains, each formulated as a 345-class classification task.

Main Results: Experiment

Table 2: Multi-Source Transfer Performance on DomainNet and Office-Home. The arrows indicate transfering from the rest tasks. The highest/second-highest accuracy is marked in Bold/Underscore form respectively.

Method	Backbone	DomainNet					Office-Home						
		\rightarrow C	→I	\rightarrow P	→Q	\rightarrow R	\rightarrow S	Avg	→Ar	→Cl	→Pr	\rightarrow Rw	Avg
Unsupervised-all-she	ots	200-200			-5-5-69			.S- 1151		200000			
MSFDA 19	ResNet50	66.5	21.6	56.7	20.4	70.5	54.4	48.4	75.6	62.8	84.8	85.3	77.1
DATE[9]	ResNet50	100000	+	-	-	0.00000	W. 9.	10103.48	75.2	60.9	85.2	84.0	76.3
M3SDA[17]	ResNet101	57.2	24.2	51.6	5.2	61.6	49.6	41.5	0.022000	10.72	7400000	-	30000
Supervised-10-shots	9												
Few-Shot Methods:													
H-ensemble 29	ViT-S	53.4	21.3	54.4	19.0	70.4	44.0	43.8	71.8	47.5	77.6	79.1	69.0
MADA[30]	ViT-S	51.0	12.8	60.3	15.0	81.4	22.7	40.5	78.4	58.3	82.3	85.2	76.1
MADA 30	ResNet50	66.1	23.9	60.4	31.9	75.4	52.5	51.7	72.2	64.4	82.9	81.9	75.4
MCW[12]	ViT-S	54.9	21.0	53.6	20.4	70.8	42.4	43.9	68.9	48.0	77.4	86.0	70.1
WADN [20]	ViT-S	68.0	29.7	59.1	16.8	74.2	55.1	50.5	60.3	39.7	66.2	68.7	58.7
Source-Ablation Met	hods:												
Target-Only	ViT-S	14.2	3.3	23.2	7.2	41.4	10.6	16.7	40.0	33.3	54.9	52.6	45.2
Single-Source-Avg	ViT-S	50.4	22.1	44.9	24.7	58.8	42.5	40.6	65.2	53.3	74.4	72.7	66.4
Single-Source-Best	ViT-S	60.2	28.0	55.4	28.4	66.0	49.7	48.0	72.9	60.9	80.7	74.8	72.3
AllSources ∪ Target	ViT-S	71.7	32.4	60.0	31.4	71.7	58.5	54.3	77.0	62.3	84.9	84.5	77.2
OTQMS (Ours)	ViT-S	72.8	33.8	61.2	33.8	73.2	59.8	55.8	78.1	64.5	85.2	84.9	78.2

Main Results: Experiment

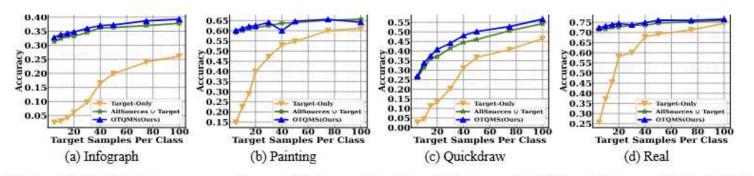


Figure 3: Performance comparison with increasing target shots up to 100 per class on DomainNet dataset (I, P, Q and R domains). OTQMS (blue) outperforms other methods.

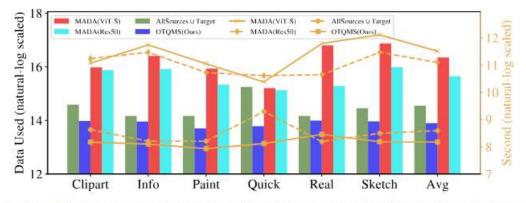


Figure 4: Data efficiency comparison of average sample usage and training time on DomainNet dataset, the left vertical axis represents the amount of sample usage, with green bars indicating AllSources ∪ Target data counts, blue bars about OTQMS, red bars about MADA(ViT-S) and azury bars about MADA(Res50), while the right orange vertical axis and lines represent training time.

Main Results: Experiment

Table 6: Multi-Source Transfer with LoRA on Office-Home. We apply LoRA on ViT-B backbone for PEFT.

Method	Backbone	Office-Home						
Method	Dackbone	→Ar	→Cl	→Pr	$\rightarrow Rw$	Avg		
Supervised-10-shots	Source-Ablati	ion:						
Target-Only	ViT-B	59.8	42.2	69.5	72.0	60.9		
Single-Source-avg	ViT-B	72.2	59.9	82.6	81.0	73.9		
Single-Source-best	ViT-B	74.4	61.8	84.9	81.9	75.8		
AllSources ∪ Target	ViT-B	81.1	66.0	88.0	89.2	81.1		
OTQMS (Ours)	ViT-B	81.5	68.0	89.2	90.3	82.3		

Table 4: Multi-task performance on four tasks of Office-Home.

Method	100 100	Office-Home							
	Backbone	Ar	Cl	Pr	Rw	Avg			
Single-task	ViT-S	66.7	62.3	87.8	68.6	71.4			
OTQMS	ViT-S	81.7	76.0	88.6	87.5	83.5			

- Background
- Preliminaries
- Main Results
- Conclusion

Conclusion

- Theoretical Framework: We formulate multi-source transfer learning as a
 parameter estimation problem and derive solutions for the optimal transfer
 quantity of each source by minimizing a K-L divergence—based generalization error
 in the asymptotic regime.
- Algorithm Design: We develop OTQMS, a dynamic and data-efficient algorithm that iteratively updates transfer quantities using empirical Fisher information, enabling adaptive resampling and improved target model training.
- Experimental Results: Experiments on DomainNet and Office-Home demonstrate that OTQMS achieves higher accuracy and better data efficiency than state-of-the-art methods, and remains robust under different shot settings and architectures.

Thanks for your attention!

https://github.com/zqy0126/OTQMS