

Revolutionizing Graph Aggregation: From Suppression to Amplification via BoostGCN

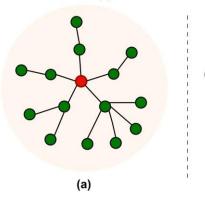
Jiaxin Wu¹, Chenglong Pang², Guangxiong Chen¹, Jie Zhao^{1,*}

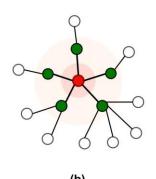
¹Guangdong University of Technology ²Donghua University

Presenter: Jiaxin Wu

Datasets	Amazo	Amazon-Book					
Metrics	Recall@20	NDCG@20					
Laplacian-based	0.0411	0.0315					
Mean-based	0.0419	0.0320					
Improv.(%)	+1.95%	+1.59%					

- > Existing GCN models often utilize the graph Laplacian norm to suppress the propagation of information to enhance performance.
- > Suppression methods may dilute valuable interaction information and make the model slowly learn sparse interaction relationships from neighbors, which increases training time and negatively affects performance.





Information Amplification

- ✓ Our BoostGCN focuses on amplifying significant interactions with first-order neighbors.
- **✓** BoostGCN has the following advantages:

1.*Great Performance*

2.Low Training Time

3. Popularity Debiasing

4.Parameter Friendly

Prediction Weighted Layer Combination Weighted Layer Combination Layer k $\sum_{i \in \mathcal{N}_u} rac{\mathcal{S}^{Amp}_{i o u}}{|\mathcal{N}_u|}$ Layer 1 Interaction A Interaction Amplification, Amplification $\sum_{u \in \mathcal{N}_i} rac{\mathcal{S}^{Amp}_{i o u}}{|\mathcal{N}_i|}$ Boost Graph Convolution (BGC) **Input**

Method

BoostGCN (Ours)

$$e_i^{(k+1)} = \sum_{u \in N_i} \frac{\log_{\beta}(|N_i|) + 1}{|N_i|} e_u^{(k)};$$

$$e_u^{(k+1)} = \sum_{i \in N_u} \frac{\log_{\beta}(|N_i|) + 1}{|N_u|} e_i^{(k)};$$

$$log_{\beta}(|N_i|) + 1 \in (1, +\infty)$$

When $\beta \to +\infty$,

BoostGCN equals LightGCN

- ✓ More interactions,
- More Importance,
- ✓ Amplifying More.

LightGCN

$$e_i^{(k+1)} = \sum_{u \in N_i} \frac{1}{\sqrt{|N_i|}\sqrt{|N_u|}} e_u^{(k)};$$

$$e_u^{(k+1)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_i|}\sqrt{|N_u|}} e_i^{(k)};$$

- ✓ More interactions,
- ✓ Less Importance,
- ✓ Suppressing More.

Recommendation Performance

Dataset	Metric	MF-BPR	$MMGCN^{id}$	NGCF	UltraGCN	IMP-GCN	NSE-GCN	LayerGCN	LightGCN	LTGNN	TransGNN	GAT	BoostGCN
	R@5	0.2636	0.2463	0.2318	0.2647	0.2864	0.2963	0.2851	0.2861	0.2833	0.2733	0.2879	0.2982
100k	N@5	0.6599	0.6181	0.6067	0.6575	0.7029	0.7209	0.6840	0.6971	0.6872	0.6630	0.6983	0.7234
	R@15	0.5289	0.4953	0.4929	0.5393	0.5611	0.5886	0.5563	0.5669	0.5612	0.5415	0.5703	0.5908
	N@15	0.6616	0.6190	0.6126	0.6662	0.7028	0.7301	0.6894	0.7044	0.6952	0.6708	0.7065	0.7319
	R@5	0.2165	0.2178	0.2081	0.2389	0.2424	0.2546	0.2599	0.2476	0.2370	0.2581	0.2537	0.2641
1M	N@5	0.7220	0.7183	0.7128	0.7554	0.7624	0.7863	0.7949	0.7770	0.7235	0.7881	0.7844	0.8063
	R@15	0.4609	0.4648	0.4545	0.5057	0.4965	0.5128	0.5251	0.5058	0.4770	0.5196	0.5106	0.5316
	N@15	0.7041	0.7011	0.6934	0.7464	0.7441	0.7651	0.7782	0.7571	0.7075	0.7707	0.7574	0.7885
	R@5	0.1996	0.0706	0.1485	0.2288	0.2808	0.2946	0.2932	0.2521	0.2178	0.2913	0.2883	0.2965
Gowa.	N@5	0.2836	0.1122	0.1892	0.3131	0.3733	0.3906	0.3890	0.3408	0.2893	0.3863	0.3828	0.3937
	R@15	0.3447	0.1400	0.3310	0.3851	0.4868	0.5123	0.5092	0.4476	0.3780	0.5055	0.5003	0.5145
	N@15	0.3125	0.1251	0.2506	0.3460	0.4235	0.4468	0.4444	0.3883	0.3298	0.4410	0.4365	0.4489
	R@5	0.1225	0.0826	0.0984	0.1435	0.1753	0.1677	0.1845	0.1545	0.1375	0.1640	0.1635	0.2001
Yelp	N@5	0.2225	0.1582	0.1747	0.2581	0.3110	0.2945	0.3238	0.2747	0.2416	0.2883	0.2874	0.3517
	R@15	0.2592	0.1900	0.2460	0.3021	0.3567	0.3478	0.3722	0.3213	0.2726	0.3253	0.3243	0.3968
	N@15	0.2498	0.1819	0.2186	0.2901	0.3455	0.3324	0.3611	0.3086	0.2658	0.3172	0.3162	0.3869

Г	Dataset		100k		1M		Yelp		Gowa.	
#Layer	Model	R@5	N@5	R@5	N@5	R@5	N@5	R@5	N@5	
1	LightGCN	0.2840	0.6937	0.2413	0.7647	0.1630	0.2895	0.2614	0.3517	
	BoostGCN	0.2946	0.7157	0.2607	0.7997	0.1824	0.3258	0.2746	0.3631	
	Improv.	+3.73%	+3.17%	+8.04%	+ 4.58 %	+11.90%	+12.54%	+5.05%	+3.24%	
2	LightGCN	0.2861	0.6971	0.2476	0.7770	0.1545	0.2747	0.2521	0.3408	
	BoostGCN	0.2982*	0.7234 *	0.2641*	0.8063*	0.2001	0.3517	0.2965	0.3937	
	Improv.	+4.23%	+3.77%	+6.66%	+3.77%	+29.51%	+28.03%	+17.61%	+15.52%	
3	LightGCN	0.2727	0.6719	0.2467	0.7763	0.1461	0.2598	0.2468	0.3329	
	BoostGCN	0.2894	0.7075	0.2601	0.7959	0.1991	0.3493	0.3030	0.4031	
	Improv.	+6.12%	+5.30%	+5.43%	+2.51%	+36.28%	+34.45%	+22.77%	+21.09%	
4	LightGCN BoostGCN Improv.	0.2021 0.2973 +47.11%	0.5339 0.7134 +33.62%	0.2405 0.2373 -1.33%	0.7643 0.7556 -1.14%	0.1396 0.2026* +45.13%	0.2494 0.3547 * +42.22 %	0.2294 0.3165* +37.97%	0.3138 0.4151* +32.28%	

- ✓ We conducted experiments on four datasets
- ✓ BoostGCN outperforms the latest existing baselines.
- ✓ In terms of layer ablation,

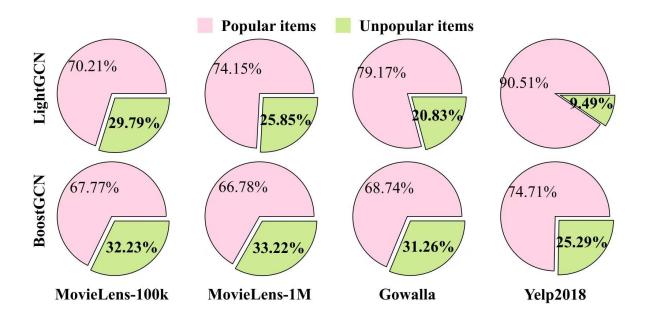
 BoostGCN far outperforms

 popular framework, LightGCN,

 in the performance of each

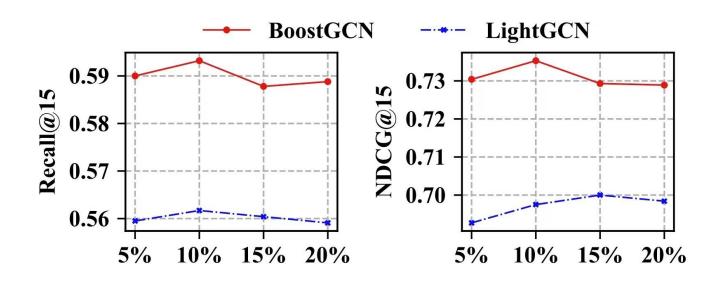
 layer.

Training Efficiency


Dataset	Model	Best R@5	Training Time		
8	LightGCN	0.2861	45s		
100k (K=2)	BoostGCN	0.2982	23s		
	Improv.	+4.23%	+49%		
8	LightGCN	0.2476	1174s		
1M (K=2)	BoostGCN	0.2641	440s		
	Improv.	+6.66%	+63%		
Ï	LightGCN	0.2294	2762s		
Gowa. (K=4)	BoostGCN	0.3165	859s		
	Improv.	+37.97%	+69%		
	LightGCN	0.1396	4525s		
Yelp (K=4)	BoostGCN	0.2026	438s		
27 80 SS 1	Improv.	+45.13%	+90%		

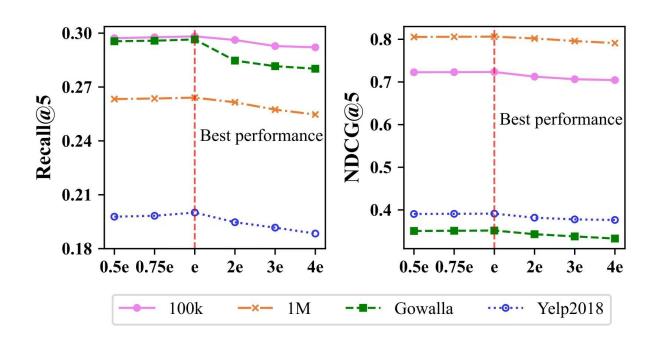
✓ BoostGCN not only far outperforms
 LightGCN in performance, but also
 significantly improves training efficiency.

Popularity Debiasing



✓ BoostGCN is able to
 recommend about 2%-16%
 more unpopular items,
 achieving a better performance
 of popularity debiasing.

Noise Resistance



- ✓ We randomly added 5%-20% spurious interactions to the dataset and compared it with LightGCN.
- ✓ We can see that BoostGCN outperforms LightGCN at different noise levels, demonstrating its superior noise resistance.

Parameter Friendly

BoostGCN achieves optimal performance with $\beta = e$ on all datasets when the parameter β ranges from {0.5e, 0.75e, e, 2e, 3e, 4e}.

Thank You for Listening

You can contact us with

Jiaxin Wu¹, Chenglong Pang², Guangxiong Chen¹, Jie Zhao^{1,*}

¹Guangdong University of Technology ²Donghua University

WeChat

Email

704276515@qq.com

clongdwyyx@163.com

3122003350@mail2.gdut.edu.cn

zhaojie@gdut.edu.cn